On the delta Mittag-Leffler functions and its application in monotonic analysis

被引:1
作者
Mohammed, Pshtiwan Othman [1 ,2 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaymaniyah 46001, Iraq
[2] Univ Sulaimani, Res & Dev Ctr, Sulaymaniyah 46001, Iraq
关键词
Monotone functions; Mittag-Leffler function; AB fractional operators; OPERATORS;
D O I
10.1016/j.cam.2025.116565
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first introduce a discrete Mittag-Leffler function of delta type. Using the Laplace transformation, some properties of the new special function are obtained. Second, we use this function to define new discrete fractional operators, namely AB fractional differences and sums, based on the Riemann-Liouville operators. We also applied the Laplace transformation on the new special functions and the related discrete operators. Finally, we propose and implement the mean value technique of discrete fractional calculus and demonstrate the advantages in terms of AB fractional differences.
引用
收藏
页数:11
相关论文
共 27 条
[1]   The effect of the Caputo fractional difference operator on a new discrete COVID-19 model [J].
Abbes, Abderrahmane ;
Ouannas, Adel ;
Shawagfeh, Nabil ;
Grassi, Giuseppe .
RESULTS IN PHYSICS, 2022, 39
[2]   Different type kernel h-fractional differences and their fractional h-sums [J].
Abdeljawad, Thabet .
CHAOS SOLITONS & FRACTALS, 2018, 116 :146-156
[3]   Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel [J].
Abdeljawad, Thabet ;
Baleanu, Dumitru .
CHAOS SOLITONS & FRACTALS, 2017, 102 :106-110
[4]   Arbitrary Order Fractional Difference Operators with Discrete Exponential Kernels and Applications [J].
Abdeljawad, Thabet ;
Al-Mdallal, Qasem M. ;
Hajji, Mohamed A. .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2017, 2017
[5]   Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels [J].
Abdeljawad, Thabet ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2016,
[6]   On Riemann and Caputo fractional differences [J].
Abdeljawad, Thabet .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1602-1611
[7]   Fractional integrable and related discrete nonlinear Schrodinger equations [J].
Ablowitz, Mark J. ;
Been, Joel B. ;
Carr, Lincoln D. .
PHYSICS LETTERS A, 2022, 452
[8]  
Atici F.M., 2020, Comput. Math. Biophys., V8, P114
[9]   Mittag-Leffler Functions in Discrete Time [J].
Atici, Ferhan M. ;
Chang, Samuel ;
Jonnalagadda, Jagan Mohan .
FRACTAL AND FRACTIONAL, 2023, 7 (03)
[10]   A New Approach for Modeling with Discrete Fractional Equations [J].
Atici, Ferhan M. ;
Atici, Mustafa ;
Belcher, Michael ;
Marshall, Dana .
FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) :313-324