Strong Chiral Response of Chiral Plasmonic Nanoparticles to Photonic Orbital Angular Momentum

被引:1
作者
Lim, Yae-Chan [1 ]
Kim, Ryeong Myeong [1 ]
Han, Jeong Hyun [1 ]
Aharonovich, Igor [2 ,3 ]
Nam, Ki Tae [1 ]
Kim, Sejeong [4 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
[2] Univ Technol Sydney, Sch Math & Phys Sci, Ultimo, NSW 2007, Australia
[3] Univ Technol Sydney, ARC Ctr Excellence Transformat Meta Opt Syst, Ultimo, NSW 2007, Australia
[4] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
来源
ADVANCED OPTICAL MATERIALS | 2025年 / 13卷 / 05期
基金
澳大利亚研究理事会; 新加坡国家研究基金会;
关键词
chiral plasmonics; chiroptical response; helical dichroism; optical vortex; orbital angular momentum; DICHROISM; LIGHT; BIOMOLECULES;
D O I
10.1002/adom.202402268
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Chiral plasmonic nanomaterials have been widely utilized to study light-matter interactions due to its capability to amplify chiroptic signals. Conventionally, chiro-optic experiments have demonstrated interactions between circularly polarized light and materials. However, employing light with chiral phase, i.e., optical vortex, can generate a strong chiral response and holds the potential to unveil extensive material information owing to the infinite topological numbers. In this work, an array of 3D chiral nanoparticles is employed to demonstrate large helical dichroism (HD). Chiral gold nanoparticle arrays are illuminated by vortex beams of opposite helicity, which revealed the high HD value of 0.93. The chiral interaction is theoretically investigated, and enantioselective interaction can be explained by multipole analysis. It is determined that the strong HD is attributed to the interaction of higher-order multipole moments such as electric quadrupole and magnetic quadrupole moments. This study provides deeper insight into understanding of the interaction between optical vortex and chiral plasmonic nanostructures and paves the way for next-generation chiroptical applications ranging from ultrasensitive chiral spectroscopy to chiral quantum optics.
引用
收藏
页数:9
相关论文
共 31 条
  • [1] ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES
    ALLEN, L
    BEIJERSBERGEN, MW
    SPREEUW, RJC
    WOERDMAN, JP
    [J]. PHYSICAL REVIEW A, 1992, 45 (11): : 8185 - 8189
  • [2] On optical vortex interactions with chiral matter
    Andrews, DL
    Romero, LCD
    Babiker, M
    [J]. OPTICS COMMUNICATIONS, 2004, 237 (1-3) : 133 - 139
  • [3] Araoka F., 2005, Physical Review A - Atomic, Molecular, and Optical Physics, V71, P1, DOI DOI 10.1103/PHYSREVA.71.0554012-S2.0-26944471202
  • [4] On the natures of the spin and orbital parts of optical angular momentum
    Barnett, Stephen M.
    Allen, L.
    Cameron, Robert P.
    Gilson, Claire R.
    Padgett, Miles J.
    Speirits, Fiona C.
    Yao, Alison M.
    [J]. JOURNAL OF OPTICS, 2016, 18 (06)
  • [5] Barron L. D., 2009, MOL LIGHT SCATTERING
  • [6] Resolving enantiomers using the optical angular momentum of twisted light
    Brullot, Ward
    Vanbel, Maarten K.
    Swusten, Tom
    Verbiest, Thierry
    [J]. SCIENCE ADVANCES, 2016, 2 (03):
  • [7] Polarization of orbital angular momentum carrying laser beams
    Conry, Jessica
    Vyas, Reeta
    Singh, Surendra
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2013, 30 (05) : 821 - 824
  • [8] Craig D. P., 1998, Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions
  • [9] Orbital angular momentum of twisted light: chirality and optical activity
    Forbes, Kayn A.
    Andrews, David L.
    [J]. JOURNAL OF PHYSICS-PHOTONICS, 2021, 3 (02):
  • [10] Kramers-Heisenberg dispersion formula for scattering of twisted light
    Forbes, Kayn A.
    Salam, A.
    [J]. PHYSICAL REVIEW A, 2019, 100 (05)