LIGO Newtonian Noise Cancellation Using Metamaterial-Based Periodic Structures

被引:0
作者
Mandal, Palas [1 ,2 ]
Somala, Surendra Nadh [3 ]
机构
[1] Vellore Inst Technol, Dept Math, Bhopal 466114, India
[2] Inst Chartered Financial Analysts India ICFAI Univ, Dept Math, Agartala 799210, India
[3] Indian Inst Technol IIT Hyderabad, Dept Civil Engn, Hyderabad 502284, India
关键词
Newtonian noise; Metamaterial; Rayleigh waves; Finite-element method; Dispersion relation; Soil; Pile; SEISMIC ISOLATION; WAVE;
D O I
10.1061/JENMDT.EMENG-7934
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a novel approach to mitigating Newtonian noise (NN) in laser interferometer gravitational wave observatory (LIGO) on Earth's surface. The proposed method offers an unprecedented means to enhance the sensitivity of terrestrial gravitational wave (GW) detectors in the low-frequency range by leveraging seismic metamaterial-based unit cell analysis. The key concept involves deploying metamaterial-based piles in the ground surrounding the primary test masses of a gravitational wave detector. This strategic placement aims to reduce the coupling of Rayleigh waves, contributing to seismic disturbances affecting test mass displacement. The discussion delves into the design considerations of cylindrical pile shapes, emphasizing their effectiveness in minimizing seismic interference. By harnessing metamaterial principles and carefully engineering the configuration of these piles, the proposed method holds promise for substantially improving the performance of terrestrial GW detectors, particularly in mitigating low-frequency noise sources. The study utilized finite-element simulations to investigate how the parameters of the metastructure and the frequency of seismic excitation impact the reduction of NN. These simulations reveal a frequency-dependent suppression of NN for the advanced LIGO configuration, particularly affecting sensitivity in the 9-15 Hz frequency band. Moreover, the analysis extends to quantifying the reduction of gravity gradient noise through both time and frequency domain analyses. An analytical expression is provided to estimate the density perturbations induced by Rayleigh waves in the medium. This approach demonstrates a favorable advantage-to-cost ratio and enhanced practicality for future infrastructures. By applying these findings, there is potential to significantly improve the sensitivity of current and future ground-based gravitational wave detectors. Additionally, the metamaterials approach holds promise for safeguarding critical infrastructure such as nuclear power plants, particularly in regions where the estimation of hazards is challenging. This indicates broader applications beyond gravitational wave detection, highlighting the versatility and importance of metamaterials in various fields.
引用
收藏
页数:17
相关论文
共 44 条
[1]   Clamped seismic metamaterials: ultra-low frequency stop bands [J].
Achaoui, Y. ;
Antonakakis, T. ;
Brule, S. ;
Craster, R. V. ;
Enoch, S. ;
Guenneau, S. .
NEW JOURNAL OF PHYSICS, 2017, 19
[2]   Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars [J].
Achaoui, Younes ;
Khelif, Abdelkrim ;
Benchabane, Sarah ;
Robert, Laurent ;
Laude, Vincent .
PHYSICAL REVIEW B, 2011, 83 (10)
[3]   Gravitational radiation detection with laser interferometry [J].
Adhikari, Rana X. .
REVIEWS OF MODERN PHYSICS, 2014, 86 (01) :121-151
[4]   Construction of KAGRA: an underground gravitational-wave observatory [J].
Akutsu, T. ;
Ando, M. ;
Araki, S. ;
Araya, A. ;
Arima, T. ;
Aritomi, N. ;
Asada, H. ;
Aso, Y. ;
Atsuta, S. ;
Awai, K. ;
Baiotti, L. ;
Barton, M. A. ;
Chen, D. ;
Cho, K. ;
Craig, K. ;
DeSalvo, R. ;
Doi, K. ;
Eda, K. ;
Enomoto, Y. ;
Flaminio, R. ;
Fujibayashi, S. ;
Fujii, Y. ;
Fujimoto, M. -K. ;
Fukushima, M. ;
Furuhata, T. ;
Hagiwara, A. ;
Haino, S. ;
Harita, S. ;
Hasegawa, K. ;
Hasegawa, M. ;
Hashino, K. ;
Hayama, K. ;
Hirata, N. ;
Hirose, E. ;
Ikenoue, B. ;
Inoue, Y. ;
Ioka, K. ;
Ishizaki, H. ;
Itoh, Y. ;
Jia, D. ;
Kagawa, T. ;
Kaji, T. ;
Kajita, T. ;
Kakizaki, M. ;
Kakuhata, H. ;
Kamiizumi, M. ;
Kanbara, S. ;
Kanda, N. ;
Kanemura, S. ;
Kaneyama, M. .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2018, 2018 (01)
[5]   Interferometer design of the KAGRA gravitational wave detector [J].
Aso, Yoichi ;
Michimura, Yuta ;
Somiya, Kentaro ;
Ando, Masaki ;
Miyakawa, Osamu ;
Sekiguchi, Takanori ;
Tatsumi, Daisuke ;
Yamamoto, Hiroaki .
PHYSICAL REVIEW D, 2013, 88 (04)
[6]   Newtonian noise and ambient ground motion for gravitational wave detectors [J].
Beker, M. G. ;
van den Brand, J. F. J. ;
Hennes, E. ;
Rabeing, D. S. .
9TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES (AMALDI 9) AND THE 2011 NUMERICAL RELATIVITY - DATA ANALYSIS MEETING (NRDA 2011), 2012, 363
[7]   Improving the sensitivity of future GW observatories in the 1-10 Hz band: Newtonian and seismic noise [J].
Beker, M. G. ;
Cella, G. ;
DeSalvo, R. ;
Doets, M. ;
Grote, H. ;
Harms, J. ;
Hennes, E. ;
Mandic, V. ;
Rabeling, D. S. ;
van den Brand, J. F. J. ;
van Leeuwen, C. M. .
GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (02) :623-656
[8]   Experiments on Seismic Metamaterials: Molding Surface Waves [J].
Brule, S. ;
Javelaud, E. H. ;
Enoch, S. ;
Guenneau, S. .
PHYSICAL REVIEW LETTERS, 2014, 112 (13)
[9]  
Carruthers TF, 2015, OPT PHOTONICS NEWS, V26, P44, DOI 10.1364/OPN.26.3.000044
[10]   Seismic isolation of buildings using composite foundations based on metamaterials [J].
Casablanca, O. ;
Ventura, G. ;
Garesci, F. ;
Azzerboni, B. ;
Chiaia, B. ;
Chiappini, M. ;
Finocchio, G. .
JOURNAL OF APPLIED PHYSICS, 2018, 123 (17)