Impacts of Grassland Use Types on Soil Ciliate Communities in the Northeastern Qinghai-Tibetan Plateau

被引:0
|
作者
Wang, Fengchu [1 ]
Biswas, Asim [2 ]
Adamowski, Jan F. [3 ]
Cao, Jianjun [1 ]
Zhang, Xiaofang [4 ]
机构
[1] Northwest Normal Univ, Coll Geog & Environm Sci, Lanzhou, Peoples R China
[2] Univ Guelph, Sch Environm Sci, Guelph, ON, Canada
[3] McGill Univ, Fac Agr & Environm Sci, Dept Bioresource Engn, Ste Anne De Bellevue, PQ, Canada
[4] Dezhou Univ, Sch Ecol Resources & Environm, Dezhou, Peoples R China
基金
中国国家自然科学基金;
关键词
alpine grassland; artificial grassland; continuous grazing; seasonal grazing; soil ciliate community; CLIMATE-CHANGE; RAIN-FORESTS; LAND-USE; DIVERSITY; PROTOZOA; BIODIVERSITY; CILIOPHORA; CARBON;
D O I
10.1002/ldr.5502
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil ciliates, crucial components of grassland ecosystems, serve as sensitive bioindicators of soil health and disturbance. This study investigates ciliate communities across four grassland use types in the northeastern Qinghai-Tibetan Plateau (QTP): seasonal and continuous grazing in natural grasslands (SGG and CGG, respectively), artificial perennial Elymus nutans Griseb. grasslands (PEG) for seasonal grazing, and artificial annual Avena sativa L. grasslands (AAG) for forage. Using live observation techniques, we identified 114 ciliate species from 10 classes and 21 orders, with Haptorida and Sporadotrichia emerging as dominant groups. Our findings revealed that the grazed grasslands harbored greater endemic ciliate species richness compared with AAG. SGG and CGG exhibited significantly higher ciliate diversity than other types, while PEG and SGG supported higher ciliate abundances. Low Jaccard similarity indices between grassland use types indicated distinct ciliate communities, reflecting management-induced environmental heterogeneity. Redundancy analysis identified above-ground biomass and soil pH as primary drivers of ciliate community structure. Notably, SGG promoted the highest ciliate diversity, suggesting its potential as a sustainable management practice for maintaining soil health in the QTP. This research provides crucial insights into the relationship between grassland management and soil ciliate diversity in high-altitude grasslands. Our findings support the implementation of moderate grazing practices to enhance soil quality and ecosystem resilience in the QTP, with implications for sustainable management of similar ecosystems worldwide.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Distribution of soil carbon in different grassland types of the Qinghai-Tibetan Plateau
    Shu-li Liu
    Yan-gong Du
    Fa-wei Zhang
    Li Lin
    Yi-kang Li
    Xiao-wei Guo
    Qian Li
    Guang-min Cao
    Journal of Mountain Science, 2016, 13 : 1806 - 1817
  • [2] Distribution of soil carbon in different grassland types of the Qinghai-Tibetan Plateau
    Liu Shu-li
    Du Yan-gong
    Zhang Fa-wei
    Lin Li
    Li Yi-kang
    Guo Xiao-wei
    Li Qian
    Cao Guang-min
    JOURNAL OF MOUNTAIN SCIENCE, 2016, 13 (10) : 1806 - 1817
  • [3] Distribution of soil carbon in different grassland types of the Qinghai-Tibetan Plateau
    LIU Shu-li
    DU Yan-gong
    ZHANG Fa-wei
    LIN Li
    LI Yi-kang
    GUO Xiao-wei
    LI Qian
    CAO Guang-min
    JournalofMountainScience, 2016, 13 (10) : 1806 - 1817
  • [4] Effects of yak and Tibetan sheep trampling on soil properties in the northeastern Qinghai-Tibetan Plateau
    Chai, Jinlong
    Yu, Xiaojun
    Xu, Changlin
    Xiao, Hong
    Zhang, Jianwen
    Yang, Hailei
    Pan, Taotao
    APPLIED SOIL ECOLOGY, 2019, 144 : 147 - 154
  • [5] Effects of Patchiness on Surface Soil Moisture of Alpine Meadow on the Northeastern Qinghai-Tibetan Plateau: Implications for Grassland Restoration
    Zhang, Wei
    Yi, Shuhua
    Qin, Yu
    Sun, Yi
    Shangguan, Donghui
    Meng, Baoping
    Li, Meng
    Zhang, Jianguo
    REMOTE SENSING, 2020, 12 (24) : 1 - 15
  • [6] The Response of Plant and Soil Properties of Alpine Grassland to Long-Term Exclosure in the Northeastern Qinghai-Tibetan Plateau
    Huang, Cuihua
    Peng, Fei
    You, Quangang
    Liao, Jie
    Duan, Hanchen
    Wang, Tao
    Xue, Xian
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2020, 8
  • [7] Effects of gravel on soil and vegetation properties of alpine grassland on the Qinghai-Tibetan plateau
    Qin, Yu
    Yi, Shuhua
    Chen, Jianjun
    Ren, Shilong
    Ding, Yongjian
    ECOLOGICAL ENGINEERING, 2015, 74 : 351 - 355
  • [8] Soil-Quality Effects of Grassland Degradation and Restoration on the Qinghai-Tibetan Plateau
    Dong, S. K.
    Wen, L.
    Li, Y. Y.
    Wang, X. X.
    Zhu, L.
    Li, X. Y.
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2012, 76 (06) : 2256 - 2264
  • [9] Grassland changes and adaptive management on the Qinghai-Tibetan Plateau
    Wang, Yanfen
    Lv, Wangwang
    Xue, Kai
    Wang, Shiping
    Zhang, Lirong
    Hu, Ronghai
    Zeng, Hong
    Xu, Xingliang
    Li, Yaoming
    Jiang, Lili
    Hao, Yanbin
    Du, Jianqing
    Sun, Jianping
    Dorji, Tsechoe
    Piao, Shilong
    Wang, Changhui
    Luo, Caiyun
    Zhang, Zhenhua
    Chang, Xiaofeng
    Zhang, Mingming
    Hu, Yigang
    Wu, Tonghua
    Wang, Jinzhi
    Li, Bowen
    Liu, Peipei
    Zhou, Yang
    Wang, A.
    Dong, Shikui
    Zhang, Xianzhou
    Gao, Qingzhu
    Zhou, Huakun
    Shen, Miaogen
    Wilkes, Andreas
    Miehe, Georg
    Zhao, Xinquan
    Niu, Haishan
    NATURE REVIEWS EARTH & ENVIRONMENT, 2022, 3 (10) : 668 - 683
  • [10] Driving factors of plant and soil properties on ecosystem multifunctionality vary among grassland types in the Qinghai-Tibetan Plateau
    Yao, Zeying
    Hu, Meng-ai
    Shi, Lina
    Wu, Qiong
    Zhang, Degang
    Liu, Guihe
    Shao, Xinqing
    Liu, Dongxia
    PLANT AND SOIL, 2025,