Proteomic Characterization of Corneal Epithelial and Stromal Cell-Derived Extracellular Vesicles

被引:0
|
作者
Yeung, Vincent [1 ]
Boychev, Nikolay [1 ]
Kanu, Levi N. [1 ]
Ng, Veronica [1 ]
Ross, Amy E. [1 ]
Hutcheon, Audrey E. K. [1 ]
Ciolino, Joseph B. [1 ]
机构
[1] Harvard Med Sch, Schepens Eye Res Inst Mass Eye & Ear, Dept Ophthalmol, Boston, MA 02114 USA
关键词
cornea; extracellular vesicles (EVs); epithelial cells; fibroblast; ingenuity pathway analysis; keratocytes; myofibroblast; proteomics; wound healing; GENE-EXPRESSION; COLLAGEN VI; FIBROBLASTS; KERATOCYTES; SECRETOME; MARKERS; LINE;
D O I
10.3390/ijms251910338
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Communication between the different layers of the cornea (epithelium and stroma) is a complex, yet crucial element in the corneal healing process. Upon corneal injury, it has been reported that the bi-directional cross talk between the epithelium and stroma via the vesicular secretome, namely, extracellular vesicles (EVs), can lead to accelerated wound closure upon injury. However, the distinct protein markers of EVs derived from human corneal epithelial (HCE) cells, keratocytes (HCKs), fibroblasts (HCFs), and myofibroblasts (HCMs) remain poorly understood. All EVs were enriched for CD81 and showed increased expression levels of ITGAV and FN1 in HCM-EVs compared to HCE- and HCF-EVs. All EVs were negative for GM130 and showed minimal differences in biophysical properties (particle concentration, median particle size, and zeta potential). At the proteomic level, we show that HCM-EVs are enriched with proteins associated with fibrosis pathways, such as COL6A1, COL6A2, MMP1, MMP2, TIMP1, and TIMP2, compared to HCE-, HCK-, and HCF-EVs. Interestingly, HCE-EVs express proteins involved with the EIF-2 signaling pathway (stress-induced signals to regulate mRNA translation), such as RPS21, RALB, EIF3H, RALA, and others, compared to HCK-, HCF-, and HCM-EVs. In this study, we isolated EVs from cell-conditioned media from HCE, HCKs, HCFs, and HCMs and characterized their biophysical and protein composition by Western blot, nanoparticle tracking analysis, and proteomics. This study supports the view that EVs from the corneal epithelium and stroma have a distinct molecular composition and may provide novel protein markers to distinguish the difference between HCE-, HCK-, HCF-, and HCM-EVs.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Dendritic Cell Maturation and Function
    Reis, Monica
    Mavin, Emily
    Nicholson, Lindsay
    Green, Kile
    Dickinson, Anne M.
    Wang, Xiao-nong
    FRONTIERS IN IMMUNOLOGY, 2018, 9
  • [32] Dendritic Cell-derived Extracellular Vesicles mediate Mesenchymal Stem/Stromal Cell recruitment
    Silva, Andreia M.
    Almeida, Maria I.
    Teixeira, Jose H.
    Maia, Andre F.
    Calin, George A.
    Barbosa, Mario A.
    Santos, Susana G.
    SCIENTIFIC REPORTS, 2017, 7
  • [33] Dendritic Cell-derived Extracellular Vesicles mediate Mesenchymal Stem/Stromal Cell recruitment
    Andreia M. Silva
    Maria I. Almeida
    José H. Teixeira
    André F. Maia
    George A. Calin
    Mário A. Barbosa
    Susana G. Santos
    Scientific Reports, 7
  • [34] Preconditioned Mesenchymal Stromal Cell-Derived Extracellular Vesicles (EVs) Counteract Inflammaging
    Gorgun, Cansu
    Africano, Chiara
    Ciferri, Maria Chiara
    Bertola, Nadia
    Reverberi, Daniele
    Quarto, Rodolfo
    Ravera, Silvia
    Tasso, Roberta
    CELLS, 2022, 11 (22)
  • [35] Immunomodulatory potential of mesenchymal stromal cell-derived extracellular vesicles in chondrocyte inflammation
    Ossendorff, Robert
    Grad, Sibylle
    Tertel, Tobias
    Wirtz, Dieter C.
    Giebel, Bernd
    Boerger, Verena
    Schildberg, Frank A.
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [36] Mesenchymal stem cell-derived extracellular vesicles promote corneal wound repair
    Ritter, Thomas
    O'Malley, Grace A.
    Lohan, Paul
    Ryan, Aideen
    Griffin, Matthew
    Rani, Sweta
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)
  • [37] A potency assay for monitoring the immunomodulatory potential of stromal cell-derived extracellular vesicles
    Ketterl, N.
    Pachler, K.
    Desgeorges, A.
    Dunai, Z.
    Laner-Plamberger, S.
    Streif, D.
    Strunk, D.
    Rohde, E.
    Gimona, M.
    HUMAN GENE THERAPY, 2017, 28 (12) : A85 - A86
  • [38] Challenges of manufacturing mesenchymal stromal cell-derived extracellular vesicles in regenerative medicine
    Wiest, Elani F.
    Zubair, Abba C.
    CYTOTHERAPY, 2020, 22 (11) : 606 - 612
  • [39] Mesenchymal Stromal Cell-Derived Extracellular Vesicles - Silver Linings for Cartilage Regeneration?
    De Luna, Andrea
    Otahal, Alexander
    Nehrer, Stefan
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [40] Effect of Human Corneal Mesenchymal Stromal Cell-derived Exosomes on Corneal Epithelial Wound Healing
    Samaeekia, Ravand
    Rabiee, Behnam
    Putra, Ilham
    Shen, Xiang
    Park, Young Jae
    Hematti, Peiman
    Eslani, Medi
    Djalilian, Ali R.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (12) : 5194 - 5200