Nanoporous Carbon Coatings Direct Li Electrodeposition Morphology and Performance in Li Metal Anode Batteries

被引:0
作者
Harrison, Katharine L. [1 ,3 ]
Goriparti, Subrahmanyam [1 ,4 ]
Long, Daniel M. [2 ,5 ]
Martin, Rachel I. [1 ]
Warren, Benjamin [1 ]
Merrill, Laura C. [1 ]
Wolak, Matthaeus A. [1 ,6 ]
Sananes, Alexander [1 ,7 ]
Siegal, Michael P. [1 ]
机构
[1] Sandia Natl Labs, Nanoscale Sci Dept, Albuquerque, NM 87123 USA
[2] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87123 USA
[3] Natl Renewable Energy Lab, Golden, CO 80401 USA
[4] Gen Motors, Warren, MI 48092 USA
[5] NBACC, Ft Detrick, MD 21702 USA
[6] Northrop Grumman, Linthicum Hts, MD 21240 USA
[7] Phys Sci Inc, Andover, MA 01810 USA
来源
BATTERIES-BASEL | 2025年 / 11卷 / 01期
关键词
batteries; lithium metal anode; pulsed laser deposition; graphene; artificial solid electrolyte interphase; LITHIUM METAL; CURRENT COLLECTOR; STABLE HOST; DEPOSITION; LAYER; ELECTROLYTES; STABILITY; FILMS;
D O I
10.3390/batteries11010010
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Li metal anodes could significantly improve battery energy density. However, Li generally electrodeposits in poorly controlled morphology, leading to safety and performance problems. One factor that controls Li anode performance and electrodeposition morphology is the nature of the electrolyte-current collector interface. Herein, we modify the Cu current collector interface by depositing precisely controlled nanoporous carbon (NPC) coatings using pulsed laser deposition to develop an understanding of how NPC coating density and thickness impact Li electrodeposition. We find that NPC density and thickness guide Li morphological evolution differently and dictate whether Li deposits at the NPC-Cu or NPC-electrolyte interface. NPC coatings generally lower overpotential for Li electrodeposition, though thicker NPC coatings limit kinetics when cycling at a high rate. Lower-density NPC enables the highest Coulombic efficiency (CE) during calendar aging tests, and higher-density NPC enables the highest CE during cycling tests.
引用
收藏
页数:24
相关论文
共 66 条
  • [1] Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries
    Adams, Brian D.
    Zheng, Jianming
    Ren, Xiaodi
    Xu, Wu
    Zhang, Ji-Guang
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (07)
  • [2] Flexible Ion-Conducting Composite Membranes for Lithium Batteries
    Aetukuri, Nagaphani B.
    Kitajima, Shintaro
    Jung, Edward
    Thompson, Leslie E.
    Virwani, Kumar
    Reich, Maria-Louisa
    Kunze, Miriam
    Schneider, Meike
    Schmidbauer, Wolfgang
    Wilcke, Winfried W.
    Bethune, Donald S.
    Scott, J. Campbell
    Miller, Robert D.
    Kim, Ho-Cheol
    [J]. ADVANCED ENERGY MATERIALS, 2015, 5 (14)
  • [3] Electrochemical characteristics of lithium metal anodes with diamond like carbon film coating layer
    Arie, Arenst Andreas
    Lee, Joong Kee
    [J]. DIAMOND AND RELATED MATERIALS, 2011, 20 (03) : 403 - 408
  • [4] Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
    Bachman, John Christopher
    Muy, Sokseiha
    Grimaud, Alexis
    Chang, Hao-Hsun
    Pour, Nir
    Lux, Simon F.
    Paschos, Odysseas
    Maglia, Filippo
    Lupart, Saskia
    Lamp, Peter
    Giordano, Livia
    Shao-Horn, Yang
    [J]. CHEMICAL REVIEWS, 2016, 116 (01) : 140 - 162
  • [5] A Scalable Approach to Dendrite-Free Lithium Anodes via Spontaneous Reduction of Spray-Coated Graphene Oxide Layers
    Bai, Maohui
    Xie, Keyu
    Yuan, Kai
    Zhang, Kun
    Li, Nan
    Shen, Chao
    Lai, Yanqing
    Vajtai, Robert
    Ajayan, Pulickel
    Wei, Bingqing
    [J]. ADVANCED MATERIALS, 2018, 30 (29)
  • [6] Bassett K.L., 2023, Front. Batter. Electrochem, V2, DOI [10.3389/fbael.2023.1292639, DOI 10.3389/FBAEL.2023.1292639]
  • [7] Atomic Layer Deposition of LixAlyS Solid-State Electrolytes for Stabilizing Lithium-Metal Anodes
    Cao, Yanqiang
    Meng, Xiangbo
    Elam, Jeffrey W.
    [J]. CHEMELECTROCHEM, 2016, 3 (06): : 858 - 863
  • [8] Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes
    Chen, Xiang
    Chen, Xiao-Ru
    Hou, Ting-Zheng
    Li, Bo-Quan
    Cheng, Xin-Bing
    Zhang, Rui
    Zhang, Qiang
    [J]. SCIENCE ADVANCES, 2019, 5 (02)
  • [9] Mitigating Metal Dendrite Formation in Lithium-Sulfur Batteries via Morphology-Tunable Graphene Oxide Interfaces
    Chen, Yu-Ting
    Abbas, Syed Ali
    Kaisar, Nahid
    Wu, Sheng Hui
    Chen, Hsin-An
    Boopathi, Karunakara Moorthy
    Singh, Mriganka
    Fang, Jason
    Pao, Chun-Wei
    Chu, Chih-Wei
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (02) : 2060 - 2070
  • [10] Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive
    Choi, Jae-Won
    Cheruvally, Gouri
    Kim, Dul-Sun
    Ahn, Jou-Hyeon
    Kim, Ki-Won
    Ahn, Hyo-Jun
    [J]. JOURNAL OF POWER SOURCES, 2008, 183 (01) : 441 - 445