Nanosatellite Autonomous Navigation via Extreme Learning Machine Using Magnetometer Measurements

被引:0
作者
Goracci, Gilberto [1 ]
Curti, Fabio [2 ]
de Guzman, Mark Anthony [1 ]
机构
[1] Univ Roma Tor Vergata, Sapienza Univ Rome, Sch Aerosp Engn, Via Salaria 851, I-00138 Rome, Italy
[2] Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ 85721 USA
关键词
space systems; orbit determination; autonomous navigation; nanosatellites; Extended Kalman Filter; Artificial Intelligence; Neural Networks; Extreme Learning Machine; ORBIT; FIELD;
D O I
10.3390/aerospace12020117
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This work presents an algorithm to perform autonomous navigation in spacecraft using onboard magnetometer data during GPS outages. An Extended Kalman Filter (EKF) exploiting magnetic field measurements is combined with a Single-Hidden-Layer Feedforward Neural Network (SLFN) trained via the Extreme Learning Machine to improve the accuracy of the state estimate. The SLFN is trained using GPS data when available and predicts the state correction to be applied to the EKF estimates. The CHAOS-7 magnetic field model is used to generate the magnetometer measurements, while a 13th-order IGRF model is exploited by the EKF. Tests on simulated data showed that the algorithm improved the state estimate provided by the EKF by a factor of 2.4 for a total of 51 days when trained on 5 days of GPS data.
引用
收藏
页数:15
相关论文
共 27 条
[21]  
Rodrguez J.L.C., 2022, P 21 PYTH SCI C AUST
[22]   Orbit determination using the geomagnetic field measurement via the unscented Kalman filter [J].
Roh, Kyoung-Min ;
Park, Sang-Young ;
Choi, Kyu-Hong .
JOURNAL OF SPACECRAFT AND ROCKETS, 2007, 44 (01) :246-253
[23]  
Schmucker U., 1985, Landoldt-Boernstein New Series Group, P100
[24]   Autonomous satellite navigation via Kalman filtering of magnetometer data [J].
Wiegand, M .
ACTA ASTRONAUTICA, 1996, 38 (4-8) :395-403
[25]   Online sequential extreme learning machine in nonstationary environments [J].
Ye, Yibin ;
Squartini, Stefano ;
Piazza, Francesco .
NEUROCOMPUTING, 2013, 116 :94-101
[26]  
Zarchan P., 2009, Fundamentals of Kalman Filtering: A Practical Approach
[27]  
Zhang W., 2024, Space Sci. Technol, DOI [10.34133/space.0211, DOI 10.34133/SPACE.0211]