Nanosatellite Autonomous Navigation via Extreme Learning Machine Using Magnetometer Measurements

被引:0
作者
Goracci, Gilberto [1 ]
Curti, Fabio [2 ]
de Guzman, Mark Anthony [1 ]
机构
[1] Univ Roma Tor Vergata, Sapienza Univ Rome, Sch Aerosp Engn, Via Salaria 851, I-00138 Rome, Italy
[2] Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ 85721 USA
关键词
space systems; orbit determination; autonomous navigation; nanosatellites; Extended Kalman Filter; Artificial Intelligence; Neural Networks; Extreme Learning Machine; ORBIT; FIELD;
D O I
10.3390/aerospace12020117
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This work presents an algorithm to perform autonomous navigation in spacecraft using onboard magnetometer data during GPS outages. An Extended Kalman Filter (EKF) exploiting magnetic field measurements is combined with a Single-Hidden-Layer Feedforward Neural Network (SLFN) trained via the Extreme Learning Machine to improve the accuracy of the state estimate. The SLFN is trained using GPS data when available and predicts the state correction to be applied to the EKF estimates. The CHAOS-7 magnetic field model is used to generate the magnetometer measurements, while a 13th-order IGRF model is exploited by the EKF. Tests on simulated data showed that the algorithm improved the state estimate provided by the EKF by a factor of 2.4 for a total of 51 days when trained on 5 days of GPS data.
引用
收藏
页数:15
相关论文
共 27 条
[1]  
Akca O, 2024, P 13 NAN S STELL S A
[2]   International Geomagnetic Reference Field: the thirteenth generation [J].
Alken, P. ;
Thebault, E. ;
Beggan, C. D. ;
Amit, H. ;
Aubert, J. ;
Baerenzung, J. ;
Bondar, T. N. ;
Brown, W. J. ;
Califf, S. ;
Chambodut, A. ;
Chulliat, A. ;
Cox, G. A. ;
Finlay, C. C. ;
Fournier, A. ;
Gillet, N. ;
Grayver, A. ;
Hammer, M. D. ;
Holschneider, M. ;
Huder, L. ;
Hulot, G. ;
Jager, T. ;
Kloss, C. ;
Korte, M. ;
Kuang, W. ;
Kuvshinov, A. ;
Langlais, B. ;
Leger, J. -M. ;
Lesur, V. ;
Livermore, P. W. ;
Lowes, F. J. ;
Macmillan, S. ;
Magnes, W. ;
Mandea, M. ;
Marsal, S. ;
Matzka, J. ;
Metman, M. C. ;
Minami, T. ;
Morschhauser, A. ;
Mound, J. E. ;
Nair, M. ;
Nakano, S. ;
Olsen, N. ;
Pavon-Carrasco, F. J. ;
Petrov, V. G. ;
Ropp, G. ;
Rother, M. ;
Sabaka, T. J. ;
Sanchez, S. ;
Saturnino, D. ;
Schnepf, N. R. .
EARTH PLANETS AND SPACE, 2021, 73 (01)
[3]  
Babcock E., 2011, CubeSat Attitude Determination via Kalman Filtering of Magnetometer and Solar Cell Data
[4]   Evaluation of attitude and orbit estimation using actual earth magnetic field data [J].
Deutschmann, JK ;
Bar-Itzhack, IY .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2001, 24 (03) :616-623
[5]   The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly [J].
Finlay, Christopher C. ;
Kloss, Clemens ;
Olsen, Nils ;
Hammer, Magnus D. ;
Toffner-Clausen, Lars ;
Grayver, Alexander ;
Kuvshinov, Alexey .
EARTH PLANETS AND SPACE, 2020, 72 (01)
[6]   Modeling irregular small bodies gravity field via extreme learning machines and Bayesian optimization [J].
Furfaro, Roberto ;
Barocco, Riccardo ;
Linares, Richard ;
Topputo, Francesco ;
Reddy, Vishnu ;
Simo, Jules ;
Le Corre, Lucille .
ADVANCES IN SPACE RESEARCH, 2021, 67 (01) :617-638
[7]  
Gruber M., 1967, An approach to target tracking
[8]   Extreme learning machine: Theory and applications [J].
Huang, Guang-Bin ;
Zhu, Qin-Yu ;
Siew, Chee-Kheong .
NEUROCOMPUTING, 2006, 70 (1-3) :489-501
[9]   Universal approximation using incremental constructive feedforward networks with random hidden nodes [J].
Huang, Guang-Bin ;
Chen, Lei ;
Siew, Chee-Kheong .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (04) :879-892
[10]  
Kalman R.E., 1960, A new approach to linear filtering and prediction problems, V82, P35, DOI [DOI 10.1115/1.3662552, 10.1115/1.3662552]