The Proximal Protonation Source in Cu-NHx-C Single Atom Catalysts Selectively Boosts CO2 to Methane Electroreduction

被引:8
作者
Cai, Rongming [1 ,2 ]
Zhu, Hong [3 ,5 ]
Yang, Fei [4 ]
Ju, Min [7 ]
Huang, Xianzhen [1 ]
Wang, Jian [7 ]
Gu, M. Danny [4 ]
Gao, Jiali [3 ,5 ,6 ]
Yang, Shihe [1 ,2 ]
机构
[1] Peking Univ, Sch Adv Mat, Guangdong Prov Key Lab Nanomicro Mat Res, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[2] Inst Biomed Engn, Shenzhen Bay Lab, Shenzhen 518107, Peoples R China
[3] Peking Univ, Sch Chem Biol & Biotechnol, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[4] Eastern Inst Adv Study, Eastern Inst Technol, Ningbo 315200, Zhejiang, Peoples R China
[5] Inst Syst & Phys Biol, Shenzhen Bay Lab, Shenzhen 518055, Peoples R China
[6] Univ Minnesota, Supercomp Inst, Dept Chem, Minneapolis, MN 55455 USA
[7] City Univ Hong Kong, Sch Energy & Environm, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
Methane; Electrochemical CO2 reduction; Copper; Single atom catalyst; Coordination environment; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTROCATALYSTS; COORDINATION; PROGRESS; COPPER;
D O I
10.1002/anie.202424098
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Regulating the coordination environment of active sites has proved powerful for tapping into their catalytic activity and selectivity in homogeneous catalysis, yet the heterogeneous nature of copper single-atom catalysts (SACs) makes it challenging. This work reports a bottom-up approach to construct a SAC (rGO@Cu-N(H-x)-C) by inlaying preformed amine coordinated Cu2+ units into reduced graphene oxide (rGO), permitting molecular level revelation on how the proximal N-site functional groups (N-H or N-CH3) impact on the carbon dioxide reduction reaction (CO2RR). It is demonstrated that the N-H moiety of rGO@Cu-NHx-C can serve as an in situ protonation agent to accelerate the CO2-to-methane reduction kinetics, delivering a methane current density (163 mA/cm(2)) 2.42-times that with the -CH3 substituted counterpart rGO@Cu-N-C. Operando spectroscopic studies and theoretical calculations elucidate that the high methane faradaic efficiency (77.1 %) achieved here is enabled by opening up the energetically favorable formyl pathway (*OCHO pathway) against the traditional *CO pathway that normally leads to various CO2RR products other than methane. Our strategy sets the stage to precisely modulate single-atom catalysts for efficient and selective electrochemical CO2 reduction.
引用
收藏
页数:10
相关论文
共 55 条
[1]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[2]   Highly Selective Electrochemical Reduction of CO2 into Methane on Nanotwinned Cu [J].
Cai, Jin ;
Zhao, Qing ;
Hsu, Wei-You ;
Choi, Chungseok ;
Liu, Yang ;
Martirez, John Mark P. ;
Chen, Chih ;
Huang, Jin ;
Carter, Emily A. ;
Huang, Yu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (16) :9136-9143
[3]   Engineering Cu(I)/Cu(0) interfaces for efficient ethanol production from CO2 electroreduction [J].
Cai, Rongming ;
Sun, Mingzi ;
Yang, Fei ;
Gu, Danny ;
Ju, Min ;
Chen, Yanpeng ;
Gu, M. Danny ;
Huang, Bolong ;
Yang, Shihe .
CHEM, 2024, 10 (01) :211-233
[4]   Unexpected high selectivity for acetate formation from CO2 reduction with copper based 2D hybrid catalysts at ultralow potentials [J].
Cai, Rongming ;
Sun, Mingzi ;
Ren, Jiazheng ;
Ju, Min ;
Long, Xia ;
Huang, Bolong ;
Yang, Shihe .
CHEMICAL SCIENCE, 2021, 12 (46) :15382-15388
[5]   Recent advances in surface/interface engineering of noble-metal free catalysts for energy conversion reactions [J].
Cai, Rongming ;
Ju, Min ;
Chen, Jinxi ;
Ren, Jiazheng ;
Yu, Jun ;
Long, Xia ;
Yang, Shihe .
MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (09) :3576-3592
[6]   Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane [J].
Cai, Yanming ;
Fu, Jiaju ;
Zhou, Yang ;
Chang, Yu-Chung ;
Min, Qianhao ;
Zhu, Jun-Jie ;
Lin, Yuehe ;
Zhu, Wenlei .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]   ??????????????Metal-Coordinated Phthalocyanines as Platform Molecules for Understanding Isolated Metal Sites in the Electrochemical Reduction of CO2 [J].
Chang, Qiaowan ;
Liu, Yumeng ;
Lee, Ju-Hyeon ;
Ologunagba, Damilola ;
Hwang, Sooyeon ;
Xie, Zhenhua ;
Kattel, Shyam ;
Lee, Ji Hoon ;
Chen, Jingguang G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (35) :16131-16138
[8]   Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction [J].
Chen, Chi ;
Kotyk, Juliet F. Khosrowabadi ;
Sheehan, Stafford W. .
CHEM, 2018, 4 (11) :2571-2586
[9]   Cu-Ag Tandem Catalysts for High-Rate CO2 Electrolysis toward Multicarbons [J].
Chen, Chubai ;
Li, Yifan ;
Yu, Sunmoon ;
Louisia, Sheena ;
Jin, Jianbo ;
Li, Mufan ;
Ross, Michael B. ;
Yang, Peidong .
JOULE, 2020, 4 (08) :1688-1699
[10]   Composition-Tuned Surface Binding on CuZn-Ni Catalysts Boosts CO2RR Selectivity toward CO Generation [J].
Chen, Jinxi ;
Wei, Xiaofei ;
Cai, Rongming ;
Ren, Jiazheng ;
Ju, Min ;
Lu, Xiaoqing ;
Long, Xia ;
Yang, Shihe .
ACS MATERIALS LETTERS, 2022, 4 (03) :497-504