Hybrid halide perovskite quantum dots for optoelectronics applications: recent progress and perspective

被引:0
作者
Suhail, Atif [1 ,2 ]
Beniwal, Shivang [1 ,3 ]
Kumar, Ramesh [4 ]
Kumar, Anjali [1 ]
Bag, Monojit [1 ,2 ]
机构
[1] Indian Inst Technol Roorkee, Adv Res Electrochem Impedance Spect Lab, Roorkee 247667, India
[2] Indian Inst Technol Roorkee, Ctr Nanotechnol, Roorkee 247667, India
[3] Univ Liverpool, Mat Innovat Factory, 51 Oxford St, Liverpool L7 3NY, England
[4] Uppsala Univ, Dept Chem, Angstrom Lab, Box 523, SE-75120 Uppsala, Sweden
关键词
hybrid; halides; perovskites; quantum; dots; optoelectronics; OPTICAL-PROPERTIES; ANION-EXCHANGE; NANOCRYSTALS; CSPBBR3; LUMINESCENT; CSPBX3; PHOTOLUMINESCENCE; CL; BR; FORMAMIDINIUM;
D O I
10.1088/1361-648X/adbb47
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Nanotechnology has transformed optoelectronics through quantum dots (QDs), particularly metal halide perovskite QDs (PQDs). PQDs boast high photoluminescent quantum yield, tunable emission, and excellent defect tolerance without extensive passivation. Quantum confinement effects, which refer to the phenomenon where the motion of charge carriers is restricted to a small region, produce discrete energy levels and blue shifts in these materials. They are ideal for next-generation optoelectronic devices prized for superior optical properties, low cost, and straightforward synthesis. In this review, along with the fundamental physics behind the phenomenon, we have covered advances in synthesis methods such as hot injection, ligand-assisted reprecipitation, ultrasonication, solvothermal, and microwave-assisted that enable precise control over size, shape, and stability, enhancing their suitability for LEDs, lasers, and photodetectors. Challenges include lead toxicity and cost, necessitating research into alternative materials and scalable manufacturing. Furthermore, strategies like doping and surface passivation that improve stability and emission control are discussed comprehensively, and how lead halide perovskites like CsPbBr3 undergo phase transitions with temperature, impacting device performance, are also investigated. We have explored various characterization techniques, providing insights into nanocrystal properties and behaviors in our study. This review highlights PQDs' synthesis, physical and optoelectronic properties, and potential applications across diverse technologies.
引用
收藏
页数:27
相关论文
共 150 条
[71]   The Rise of Colloidal Lead Halide Perovskite Quantum Dot Solar Cells [J].
Ling, Xufeng ;
Yuan, Jianyu ;
Ma, Wanli .
ACCOUNTS OF MATERIALS RESEARCH, 2022, 3 (08) :866-878
[72]   Highly Luminescent Phase-Stable CsPbl3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield [J].
Liu, Feng ;
Zhang, Yaohong ;
Ding, Chao ;
Kobayashi, Syuusuke ;
Izuishi, Takuya ;
Nakazawa, Naoki ;
Toyoda, Taro ;
Ohta, Tsuyoshi ;
Hayase, Shuzi ;
Minemoto, Takashi ;
Yoshino, Kenji ;
Dai, Songyuan ;
Shen, Qing .
ACS NANO, 2017, 11 (10) :10373-10383
[73]   Perovskite Quantum Dots in Solar Cells [J].
Liu, Lu ;
Najar, Adel ;
Wang, Kai ;
Du, Minyong ;
Liu, Shengzhong .
ADVANCED SCIENCE, 2022, 9 (07)
[74]   Optoelectronic and photocatalytic properties of I-III-VI QDs: Bridging between traditional and emerging new QDs [J].
Liu, Yanhong ;
Li, Fenghua ;
Huang, Hui ;
Mao, Baodong ;
Liu, Yang ;
Kang, Zhenhui .
JOURNAL OF SEMICONDUCTORS, 2020, 41 (09)
[75]   Bright and Stable Light-Emitting Diodes Based on Perovskite Quantum Dots in Perovskite Matrix [J].
Liu, Yuan ;
Dong, Yitong ;
Zhu, Tong ;
Ma, Dongxin ;
Proppe, Andrew ;
Chen, Bin ;
Zheng, Chao ;
Hou, Yi ;
Lee, Seungjin ;
Sun, Bin ;
Jung, Eui Hyuk ;
Yuan, Fanglong ;
Wang, Ya-kun ;
Sagar, Laxmi Kishore ;
Hoogland, Sjoerd ;
de Arquer, F. Pelayo Garcia ;
Choi, Min-Jae ;
Singh, Kamalpreet ;
Kelley, Shana O. ;
Voznyy, Oleksandr ;
Lu, Zheng-Hong ;
Sargent, Edward H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (38) :15606-15615
[76]   Micro-light-emitting diodes with quantum dots in display technology [J].
Liu, Zhaojun ;
Lin, Chun-Ho ;
Hyun, Byung-Ryool ;
Sher, Chin-Wei ;
Lv, Zhijian ;
Luo, Bingqing ;
Jiang, Fulong ;
Wu, Tom ;
Ho, Chih-Hsiang ;
Kuo, Hao-Chung ;
He, Jr-Hau .
LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
[77]  
Mach H, 1995, Methods Mol Biol, V40, P91
[78]   Light Absorption Coefficient of CsPbBr3 Perovskite Nanocrystals [J].
Maes, Jorick ;
Balcaen, Lieve ;
Drijvers, Emile ;
Zhao, Qjang ;
De Roo, Jonathan ;
Vantomme, Andre ;
Vanhaecke, Frank ;
Geiregat, Pieter ;
Hens, Zeger .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (11) :3093-3097
[79]   Experimental Determination of the Molar Absorption Coefficient of Cesium Lead Halide Perovskite Quantum Dots [J].
Mannar, Subhashri ;
Mandal, Prasenjit ;
Roy, Angira ;
Viswanatha, Ranjani .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (27) :6290-6297
[80]   Intriguing Optoelectronic Properties of Metal Halide Perovskites [J].
Manser, Joseph S. ;
Christians, Jeffrey A. ;
Kamat, Prashant V. .
CHEMICAL REVIEWS, 2016, 116 (21) :12956-13008