Atmospheric Transport Modeling of CO2 With Neural Networks

被引:1
作者
Benson, Vitus [1 ,2 ,3 ]
Bastos, Ana [2 ,4 ]
Reimers, Christian [1 ,2 ]
Winkler, Alexander J. [1 ,2 ]
Yang, Fanny [3 ]
Reichstein, Markus [1 ,2 ]
机构
[1] Max Planck Inst Biogeochem, Jena, Germany
[2] ELLIS Unit Jena, Jena, Germany
[3] Swiss Fed Inst Technol, Zurich, Switzerland
[4] Univ Leipzig, Leipzig, Germany
基金
欧洲研究理事会;
关键词
AI; atmospheric transport; machine learning; inverse modeling; carbon dioxide; neural network; CARBON-DIOXIDE; TRACER TRANSPORT; FLUXES; SIMULATION; WEATHER; UNCERTAINTY; ALGORITHM; EXCHANGE; SITES;
D O I
10.1029/2024MS004655
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Accurately describing the distribution of CO2 in the atmosphere with atmospheric tracer transport models is essential for greenhouse gas monitoring and verification support systems to aid implementation of international climate agreements. Large deep neural networks are poised to revolutionize weather prediction, which requires 3D modeling of the atmosphere. While similar in this regard, atmospheric transport modeling is subject to new challenges. Both, stable predictions for longer time horizons and mass conservation throughout need to be achieved, while IO plays a larger role compared to computational costs. In this study we explore four different deep neural networks (UNet, GraphCast, Spherical Fourier Neural Operator and SwinTransformer) which have proven as state-of-the-art in weather prediction to assess their usefulness for atmospheric tracer transport modeling. For this, we assemble the CarbonBench data set, a systematic benchmark tailored for machine learning emulators of Eulerian atmospheric transport. Through architectural adjustments, we decouple the performance of our emulators from the distribution shift caused by a steady rise in atmospheric CO2. More specifically, we center CO2 input fields to zero mean and then use an explicit flux scheme and a mass fixer to assure mass balance. This design enables stable and mass conserving transport for over 6 months with all four neural network architectures. In our study, the SwinTransformer displays particularly strong emulation skill: 90- day R-2 > 0.99 and physically plausible multi-year forward runs. This work paves the way toward high resolution forward and inverse modeling of inert trace gases with neural networks.
引用
收藏
页数:19
相关论文
共 85 条
[21]   On the assignment of prior errors in Bayesian inversions of CO2 surface fluxes [J].
Chevallier, Frederic ;
Viovy, Nicolas ;
Reichstein, Markus ;
Ciais, Philippe .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (13)
[22]   Toward High-Resolution Global Atmospheric Inverse Modeling Using Graphics Accelerators [J].
Chevallier, Frederic ;
Lloret, Zoe ;
Cozic, Anne ;
Takache, Sakina ;
Remaud, Marine .
GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (05)
[23]  
Ciais P., 2011, Greenhouse Gas Inventories, P69, DOI [10.1007/97894007167046, DOI 10.1007/97894007167046]
[24]   Global mass fixer algorithms for conservative tracer transport in the ECMWF model [J].
Diamantakis, M. ;
Flemming, J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (03) :965-979
[25]   Limits on the ability of global Eulerian models to resolve intercontinental transport of chemical plumes [J].
Eastham, Sebastian D. ;
Jacob, Daniel J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (04) :2543-2553
[26]  
Fillola E., 2022, EGUsphere, P1
[27]   Global Carbon Budget 2023 [J].
Friedlingstein, Pierre ;
O'Sullivan, Michael ;
Jones, Matthew W. ;
Andrew, Robbie M. ;
Bakker, Dorothee C. E. ;
Hauck, Judith ;
Landschutzer, Peter ;
Le Quere, Corinne ;
Luijkx, Ingrid T. ;
Peters, Glen P. ;
Peters, Wouter ;
Pongratz, Julia ;
Schwingshackl, Clemens ;
Sitch, Stephen ;
Canadell, Josep G. ;
Ciais, Philippe ;
Jackson, Robert B. ;
Alin, Simone R. ;
Anthoni, Peter ;
Barbero, Leticia ;
Bates, Nicholas R. ;
Becker, Meike ;
Bellouin, Nicolas ;
Decharme, Bertrand ;
Bopp, Laurent ;
Brasika, Ida Bagus Mandhara ;
Cadule, Patricia ;
Chamberlain, Matthew A. ;
Chandra, Naveen ;
Chau, Thi-Tuyet-Trang ;
Chevallier, Frederic ;
Chini, Louise P. ;
Cronin, Margot ;
Dou, Xinyu ;
Enyo, Kazutaka ;
Evans, Wiley ;
Falk, Stefanie ;
Feely, Richard A. ;
Feng, Liang ;
Ford, Daniel J. ;
Gasser, Thomas ;
Ghattas, Josefine ;
Gkritzalis, Thanos ;
Grassi, Giacomo ;
Gregor, Luke ;
Gruber, Nicolas ;
Gurses, Ozgur ;
Harris, Ian ;
Hefner, Matthew ;
Heinke, Jens .
EARTH SYSTEM SCIENCE DATA, 2023, 15 (12) :5301-5369
[28]   Global atmospheric CO2 inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate [J].
Gaubert, Benjamin ;
Stephens, Britton B. ;
Basu, Sourish ;
Chevallier, Frederic ;
Deng, Feng ;
Kort, Eric A. ;
Patra, Prabir K. ;
Peters, Wouter ;
Roedenbeck, Christian ;
Saeki, Tazu ;
Schimel, David ;
Van der Laan-Luijkx, Ingrid ;
Wofsy, Steven ;
Yin, Yi .
BIOGEOSCIENCES, 2019, 16 (01) :117-134
[29]  
Gelaro R., 2015, Evaluation of the 7km GEOS5 Nature Run
[30]   Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models [J].
Gurney, KR ;
Law, RM ;
Denning, AS ;
Rayner, PJ ;
Baker, D ;
Bousquet, P ;
Bruhwiler, L ;
Chen, YH ;
Ciais, P ;
Fan, S ;
Fung, IY ;
Gloor, M ;
Heimann, M ;
Higuchi, K ;
John, J ;
Maki, T ;
Maksyutov, S ;
Masarie, K ;
Peylin, P ;
Prather, M ;
Pak, BC ;
Randerson, J ;
Sarmiento, J ;
Taguchi, S ;
Takahashi, T ;
Yuen, CW .
NATURE, 2002, 415 (6872) :626-630