Atmospheric Transport Modeling of CO2 With Neural Networks

被引:1
作者
Benson, Vitus [1 ,2 ,3 ]
Bastos, Ana [2 ,4 ]
Reimers, Christian [1 ,2 ]
Winkler, Alexander J. [1 ,2 ]
Yang, Fanny [3 ]
Reichstein, Markus [1 ,2 ]
机构
[1] Max Planck Inst Biogeochem, Jena, Germany
[2] ELLIS Unit Jena, Jena, Germany
[3] Swiss Fed Inst Technol, Zurich, Switzerland
[4] Univ Leipzig, Leipzig, Germany
基金
欧洲研究理事会;
关键词
AI; atmospheric transport; machine learning; inverse modeling; carbon dioxide; neural network; CARBON-DIOXIDE; TRACER TRANSPORT; FLUXES; SIMULATION; WEATHER; UNCERTAINTY; ALGORITHM; EXCHANGE; SITES;
D O I
10.1029/2024MS004655
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Accurately describing the distribution of CO2 in the atmosphere with atmospheric tracer transport models is essential for greenhouse gas monitoring and verification support systems to aid implementation of international climate agreements. Large deep neural networks are poised to revolutionize weather prediction, which requires 3D modeling of the atmosphere. While similar in this regard, atmospheric transport modeling is subject to new challenges. Both, stable predictions for longer time horizons and mass conservation throughout need to be achieved, while IO plays a larger role compared to computational costs. In this study we explore four different deep neural networks (UNet, GraphCast, Spherical Fourier Neural Operator and SwinTransformer) which have proven as state-of-the-art in weather prediction to assess their usefulness for atmospheric tracer transport modeling. For this, we assemble the CarbonBench data set, a systematic benchmark tailored for machine learning emulators of Eulerian atmospheric transport. Through architectural adjustments, we decouple the performance of our emulators from the distribution shift caused by a steady rise in atmospheric CO2. More specifically, we center CO2 input fields to zero mean and then use an explicit flux scheme and a mass fixer to assure mass balance. This design enables stable and mass conserving transport for over 6 months with all four neural network architectures. In our study, the SwinTransformer displays particularly strong emulation skill: 90- day R-2 > 0.99 and physically plausible multi-year forward runs. This work paves the way toward high resolution forward and inverse modeling of inert trace gases with neural networks.
引用
收藏
页数:19
相关论文
共 85 条
[1]   Forecasting global atmospheric CO2 [J].
Agusti-Panareda, A. ;
Massart, S. ;
Chevallier, F. ;
Boussetta, S. ;
Balsamo, G. ;
Beljaars, A. ;
Ciais, P. ;
Deutscher, N. M. ;
Engelen, R. ;
Jones, L. ;
Kivi, R. ;
Paris, J. -D. ;
Peuch, V. -H. ;
Sherlock, V. ;
Vermeulen, A. T. ;
Wennberg, P. O. ;
Wunch, D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (21) :11959-11983
[2]   Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020 [J].
Agusti-Panareda, Anna ;
Barre, Jerome ;
Massart, Sebastien ;
Inness, Antje ;
Aben, Ilse ;
Ades, Melanie ;
Baier, Bianca C. ;
Balsamo, Gianpaolo ;
Borsdorff, Tobias ;
Bousserez, Nicolas ;
Boussetta, Souhail ;
Buchwitz, Michael ;
Cantarello, Luca ;
Crevoisier, Cyril ;
Engelen, Richard ;
Eskes, Henk ;
Flemming, Johannes ;
Garrigues, Sebastien ;
Hasekamp, Otto ;
Huijnen, Vincent ;
Jones, Luke ;
Kipling, Zak ;
Langerock, Bavo ;
McNorton, Joe ;
Meilhac, Nicolas ;
Noel, Stefan ;
Parrington, Mark ;
Peuch, Vincent-Henri ;
Ramonet, Michel ;
Razinger, Miha ;
Reuter, Maximilian ;
Ribas, Roberto ;
Suttie, Martin ;
Sweeney, Colm ;
Tarniewicz, Jerome ;
Wu, Lianghai .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (06) :3829-3859
[3]   Global nature run data with realistic high-resolution carbon weather for the year of the Paris Agreement [J].
Agusti-Panareda, Anna ;
McNorton, Joe ;
Balsamo, Gianpaolo ;
Baier, Bianca C. ;
Bousserez, Nicolas ;
Boussetta, Souhail ;
Brunner, Dominik ;
Chevallier, Frederic ;
Choulga, Margarita ;
Diamantakis, Michail ;
Engelen, Richard ;
Flemming, Johannes ;
Granier, Claire ;
Guevara, Marc ;
van der Gon, Hugo Denier ;
Elguindi, Nellie ;
Haussaire, Jean-Matthieu ;
Jung, Martin ;
Janssens-Maenhout, Greet ;
Kivi, Rigel ;
Massart, Sebastien ;
Papale, Dario ;
Parrington, Mark ;
Razinger, Miha ;
Sweeney, Colm ;
Vermeulen, Alex ;
Walther, Sophia .
SCIENTIFIC DATA, 2022, 9 (01)
[4]   Modelling CO2 weather - why horizontal resolution matters [J].
Agusti-Panareda, Anna ;
Diamantakis, Michail ;
Massart, Sebastien ;
Chevallier, Frederic ;
Munoz-Sabater, Joaquin ;
Barre, Jerome ;
Curcoll, Roger ;
Engelen, Richard ;
Langerock, Bavo ;
Law, Rachel M. ;
Loh, Zoe ;
Anton Morgui, Josep ;
Parrington, Mark ;
Pench, Vincent-Henri ;
Ramonet, Michel ;
Roehl, Coleen ;
Vermeulen, Alex T. ;
Warneke, Thorsten ;
Wunch, Debra .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (11) :7347-7376
[5]   Improving the inter-hemispheric gradient of total column atmospheric CO2 and CH4 in simulations with the ECMWF semi-Lagrangian atmospheric global model [J].
Agusti-Panareda, Anna ;
Diamantakis, Michail ;
Bayona, Victor ;
Klappenbach, Friedrich ;
Butz, Andre .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (01) :1-18
[6]  
Alkin B, 2025, Arxiv, DOI arXiv:2402.12365
[7]   A Hybrid Approach to Atmospheric Modeling That Combines Machine Learning With a Physics-Based Numerical Model [J].
Arcomano, Troy ;
Szunyogh, Istvan ;
Wikner, Alexander ;
Pathak, Jaideep ;
Hunt, Brian R. ;
Ott, Edward .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2022, 14 (03)
[8]   Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection [J].
Belikov, D. A. ;
Maksyutov, S. ;
Krol, M. ;
Fraser, A. ;
Rigby, M. ;
Bian, H. ;
Agusti-Panareda, A. ;
Bergmann, D. ;
Bousquet, P. ;
Cameron-Smith, P. ;
Chipperfield, M. P. ;
Fortems-Cheiney, A. ;
Gloor, E. ;
Haynes, K. ;
Hess, P. ;
Houweling, S. ;
Kawa, S. R. ;
Law, R. M. ;
Loh, Z. ;
Meng, L. ;
Palmer, P. I. ;
Patra, P. K. ;
Prinn, R. G. ;
Saito, R. ;
Wilson, C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (03) :1093-1114
[9]  
Benson V., 2024, **DATA OBJECT**, DOI 10.5281/zenodo.14502316
[10]   Atmospheric Transport Modeling of CO2 With Neural Networks [J].
Benson, Vitus ;
Bastos, Ana ;
Reimers, Christian ;
Winkler, Alexander J. ;
Yang, Fanny ;
Reichstein, Markus .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2025, 17 (02)