Organosilicon Liquid Crystal Polymers and Elastomers Prepared by Metal-Free Photocatalytic Hydrosilylation Polymerization

被引:0
作者
Shao, Shimin [1 ]
Huang, Jiaxiang [1 ]
Mi, Hao [1 ]
Hu, Jun [1 ]
Wang, Meng [1 ]
Yang, Hong [1 ]
机构
[1] Southeast Univ, Sch Chem & Chem Engn, State Key Lab Digital Med Engn, Nanjing 211189, Jiangsu Provinc, Peoples R China
基金
中国国家自然科学基金;
关键词
MAIN-CHAIN; POLYSILOXANES;
D O I
10.1021/acs.macromol.5c00012
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In the synthesis of organosilicon liquid crystal polymers (LCPs) and elastomers (LCEs), platinum-catalyzed hydrosilylation stands as the predominant synthetic method. However, this approach often relies on noble platinum catalysts that are difficult to remove. In this study, we synthesize a series of organosilicon LCPs and LCEs via photocatalytic, metal-free hydrosilylation polymerization of silanes and diene-terminated mesogenic monomers, using an organic photocatalyst alongside a hydrogen atom transfer catalyst. The resulting LCPs and LCEs have well-defined backbone structures, excellent thermal and mechanical properties. Notably, the monodomain LCEs exhibit impressive thermal-driven actuation capabilities due to their main-chain organosilicon structures and low LC-to-isotropic phase transition temperatures. This advance is expected to provide new opportunities for the applications of organosilicon LCP and LCE materials in biomedical research and material science.
引用
收藏
页码:2736 / 2744
页数:9
相关论文
共 45 条
  • [1] Yang R., Wang Y., Yao H., Li Y., Chen L., Zhao Y., Wang Y.Z., Dynamic Shape Change of Liquid Crystal Polymer Based on An Order-Order Phase Transition, Angew. Chem., Int. Ed., 63, (2024)
  • [2] McCracken J.M., Donovan B.R., White T.J., Materials as Machines, Adv. Mater., 32, (2020)
  • [3] Tan L., Davis A.C., Cappelleri D.J., Smart Polymers for Microscale Machines, Adv. Funct. Mater., 31, (2021)
  • [4] Liu Z.-C., Wang M., Huang S., Yang H., Biodegradable and Crosslinkable Poly (propylene fumarate) Liquid Crystal Polymers, Polym. Chem., 13, pp. 1267-1273, (2022)
  • [5] Nolan H., Zen F., Gencer A., Henderson L., Kelly M., Pota F., Schroder C., Scanlan E.M., Colavita P.E., Functional Organic Adlayers for Controlling the Adhesion Strength of Electrolessly Deposited Copper on Super-engineering Plastics, Appl. Surf. Sci., 682, (2025)
  • [6] Zeng H., Wani O.M., Wasylczyk P., Kaczmarek R., Priimagi A., Self-Regulating Iris Based on Light-Actuated Liquid Crystal Elastomer, Adv. Mater., 29, (2017)
  • [7] Cai F., Yang B., Yu M., Zeng S., Yu H., Photocontrollable Liquid-Crystalline Block Copolymers: Design, Photo-Directed Self-Assembly and Applications, J. Mater. Chem. C, 11, pp. 3180-3196, (2023)
  • [8] Li G., Chen X., Zhou F., Liang Y., Xiao Y., Cao X., Zhang Z., Zhang M., Wu B., Yin S., Self-Powered Soft Robot in the Mariana Trench, Nature, 591, pp. 66-71, (2021)
  • [9] Chen G., Jin B., Shi Y., Zhao Q., Shen Y., Xie T., Rapidly and Repeatedly Reprogrammable Liquid Crystalline Elastomer via A Shape Memory Mechanism, Adv. Mater., 34, (2022)
  • [10] Zhao X., Chen Y., Peng B., Wei J., Yu Y., A Facile Strategy for the Development of Recyclable Multifunctional Liquid Crystal Polymers via Post-Polymerization Modification and Ring-Opening Metathesis Polymerization, Angew. Chem., Int. Ed., 62, (2023)