Corrosion Mechanism and Properties of 316L Stainless Steel in NaCl-KCl Molten Salt at High Temperatures

被引:1
作者
Lv, Ruimin [1 ,2 ]
Tang, Xian [1 ]
Ying, Zhemian [2 ,3 ]
Ai, Hua [2 ]
Sun, Hua [2 ]
Zhang, Wei [2 ]
Wang, Ying [4 ]
Cheng, Jinjuan [5 ]
Yan, Long [2 ]
机构
[1] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201210, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Shanghai Synchrotron Radiat Facil, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
[5] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China
基金
中国国家自然科学基金;
关键词
316L SS alloy; corrosion; molten salt; NaCl-KCl; corrosion mechanism; HEAT-TRANSFER FLUIDS; NI-BASED ALLOYS; LICL-KCL; BEHAVIOR; SUPERALLOYS; SYSTEMS; VACUUM;
D O I
10.3390/cryst15030280
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The corrosion properties of 316L stainless steel (316L SS) alloy within molten NaCl-KCl salt were explored through a static immersion experiment carried out at 700 degrees C under Ar flow for 25, 50, 100, 200, and 400 h. The loss in weight of the corroded 316L SS alloy increased from 0.06 to 1.71 mg/cm2, while the maximum corrosion depth increased from 1.71 to 14.09 mu m. However, the corrosion rate initially increased from 27.54 mu m/year to 93.45 mu m/year and then decreased to 47.22 mu m/year as the soaking time was increased from 25 to 400 h. The impurities in the molten salts produced corrosive Cl2 and HCl, which corroded the 316L SS matrix. The accelerated selective Cr dissolution with small amounts of Fe and Ni resulted in intergranular corrosion as the time of corrosion was increased. The depletion depths for Ni, Cr, and Fe at 400 h were found to be 0.87 mu m, 3.94 mu m, and 1.47 mu m, respectively. The formation of Cr and Fe oxides might potentially play a vital role. The grain boundary and outward diffusion of Mo may prevent the outward diffusion of Cr, thereby mitigating alloy corrosion. Therefore, molten chloride salt purification and the selection of stainless steel are crucial for developing future concentrated solar power technologies. The findings of this study provide guidelines for the use of 316L SS in NaCl-KCl salt at high temperatures.
引用
收藏
页数:17
相关论文
共 46 条
[1]   Impact of the additive manufacturing process on the high-temperature corrosion of 316L steel in the presence of NaCl-KCl-ZnCl2 molten solar salt [J].
Abu-warda, N. ;
Garcia-Rodriguez, S. ;
Torres, B. ;
Utrilla, M., V ;
Rams, J. .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 20 :3949-3961
[2]   Advanced heat transfer fluids for direct molten salt line-focusing CSP plants [J].
Bonk, Alexander ;
Sau, Salvatore ;
Uranga, Nerea ;
Hernaiz, Marta ;
Bauer, Thomas .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2018, 67 :69-87
[3]   Corrosion behavior of UCX, KHR35, and KHR45 alloys in molten nitrates [J].
Brito-Hernandez, Daniel ;
Lopez-Sesenes, Roy ;
Haro, Sergio ;
Porcayo-Calderon, Jesus ;
Gonzalez-Rodriguez, Jose G. .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2020, 71 (11) :1783-1793
[4]   Condensation in the KCl-NaCl system [J].
Brostrom, Markus ;
Enestam, Sonja ;
Backman, Rainer ;
Makela, Kari .
FUEL PROCESSING TECHNOLOGY, 2013, 105 :142-148
[5]   Improving the working fluid based on a NaNO3-KNO3-NaCl-KCl molten salt mixture for concentrating solar power energy storage [J].
Castro-Quijada, Matias ;
Faundez, Daniel ;
Rojas, Rene ;
Videla, Alvaro .
SOLAR ENERGY, 2022, 231 :464-472
[6]   Corrosion behaviours of Ni-Mo-Cr alloy and 316 stainless steel in molten NaCl-KCl-AlCl3 salts at high temperature [J].
Chen, Saijun ;
Liu, Qi ;
Yang, Zhigang ;
Guo, Fangyuan ;
Chen, Liuping ;
Zhang, Zhigang ;
Tang, Zhongfeng .
CORROSION ENGINEERING SCIENCE AND TECHNOLOGY, 2023, 58 (02) :103-107
[7]   Ellingham diagram: A new look at an old tool [J].
Epifano, E. ;
Monceau, D. .
CORROSION SCIENCE, 2023, 217
[8]   Carbide precipitation in austenitic stainless steel carburized at low temperature [J].
Ernst, F. ;
Cao, Y. ;
Michal, G. M. ;
Heuer, A. H. .
ACTA MATERIALIA, 2007, 55 (06) :1895-1906
[9]   Molten chloride salt technology for next-generation CSP plants: Selection of cold tank structural material utilizing corrosion control at 500?C [J].
Gong, Qing ;
Hanke, Andrea ;
Kessel, Fiona ;
Bonk, Alexander ;
Bauer, Thomas ;
Ding, Wenjin .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 253
[10]   Molten chloride salt technology for next-generation CSP plants: Compatibility of Fe-based alloys with purified molten MgCl2-KCl-NaCl salt at 700 °C [J].
Gong, Qing ;
Shi, Hao ;
Chai, Yan ;
Yu, Rui ;
Weisenburger, Alfons ;
Wang, Dihua ;
Bonk, Alexander ;
Bauer, Thomas ;
Ding, Wenjin .
APPLIED ENERGY, 2022, 324