Integrability of quantum dots

被引:0
作者
Dunajski, Maciej [1 ]
Maciejewski, Andrzej [2 ]
Przybylska, Maria [3 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Zielona Gora, Janusz Gil Inst Astron, Licealna 9, PL-65417 Zielona Gora, Poland
[3] Univ Zielona Gora, Inst Phys, Licealna 9, PL-65417 Zielona Gora, Poland
关键词
SYSTEMS;
D O I
10.1016/j.physletb.2024.139097
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We determine the frequency ratios.. =..../.... for which the Hamiltonian system with a potential.. = 1.. + 1 2 (....2(..2 +..2) +.... 2..2) is completely integrable. We relate this result to the existence of conformal Killing tensors of the associated Eisenhart metric on R1,4. Finally we show that trajectories of a particle moving under the influence of the potential.. are not unparametrised geodesics of any Riemannian metric on R3.
引用
收藏
页数:4
相关论文
共 14 条
  • [1] CHAOS AND ORDER OF LASER-COOLED IONS IN A PAUL TRAP
    BLUMEL, R
    KAPPLER, C
    QUINT, W
    WALTHER, H
    [J]. PHYSICAL REVIEW A, 1989, 40 (02): : 808 - 823
  • [2] Bryant R, 2009, J DIFFER GEOM, V83, P465
  • [3] Conformal killing tensors and covariant Hamiltonian dynamics
    Cariglia, M.
    Gibbons, G. W.
    van Holten, J. -W.
    Horvathy, P. A.
    Zhang, P. -M.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (12)
  • [4] Killing tensors and canonical geometry
    Cariglia, M.
    Gibbons, G. W.
    van Holten, J-W
    Horvathy, P. A.
    Kosinski, P.
    Zhang, P-M
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (12)
  • [5] A note on algebraic potentials and Morales-Ramis theory
    Combot, Thierry
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2013, 115 (04) : 397 - 404
  • [6] Equivalence principle, de-Sitter space, and cosmological twistors
    Dunajski, Maciej
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2023, 32 (14):
  • [7] Metrisability of three-dimensional path geometries
    Dunajski, Maciej
    Eastwood, Michael
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2016, 2 (03) : 809 - 834
  • [8] Eastwood M., 2018, arXiv
  • [9] Dynamical trajectories and geodesics.
    Eisenhart, LP
    [J]. ANNALS OF MATHEMATICS, 1928, 30 : 591 - 606
  • [10] FELS ME, 1995, P LOND MATH SOC, V71, P221