About Interpretable Learning Rules for Vector Quantizers - A Methodological Approach

被引:0
作者
Schubert, Ronny [1 ]
Villmann, Thomas [1 ]
机构
[1] Univ Appl Sci Mittweida, Saxon Inst Computat Intelligence & Machine Learni, Mittweida, Germany
来源
ADVANCES IN SELF-ORGANIZING MAPS, LEARNING VECTOR QUANTIZATION, INTERPRETABLE MACHINE LEARNING, AND BEYOND, WSOM PLUS 2024 | 2024年 / 1087卷
关键词
QUANTIZATION;
D O I
10.1007/978-3-031-67159-3_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we will investigate two approaches to deploy learning rules. A combination of these approaches is used to create a generic learning rule for prototype-based models with the emphasis on interpretability. In this regard, we will show how the learning rules are associated to the underlying decision making of such models. Moreover, the work concludes by giving possible interpretations of these rules and anchor points for developing related explanations and designing comprehensible learning rules.
引用
收藏
页码:152 / 162
页数:11
相关论文
共 24 条
  • [1] Evaluating Robustness of Counterfactual Explanations
    Artelt, Andre
    Vaquet, Valerie
    Velioglu, Riza
    Hinder, Fabian
    Brinkrolf, Johannes
    Schilling, Malte
    Hammer, Barbara
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [2] Learning vector quantization: The dynamics of winner-takes-all algorithms
    Biehl, M
    Ghosh, A
    Hammer, B
    [J]. NEUROCOMPUTING, 2006, 69 (7-9) : 660 - 670
  • [3] Prototype-based models in machine learning
    Biehl, Michael
    Hammer, Barbara
    Villmann, Thomas
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COGNITIVE SCIENCE, 2016, 7 (02) : 92 - 111
  • [4] Interpretable machine learning with reject option
    Brinkrolf, Johannes
    Hammer, Barbara
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2018, 66 (04) : 283 - 290
  • [5] Computational intelligence methods for rule-based data understanding
    Duch, W
    Setiono, R
    Zurada, JM
    [J]. PROCEEDINGS OF THE IEEE, 2004, 92 (05) : 771 - 805
  • [6] SELF-ORGANIZING MAPS - ORDERING, CONVERGENCE PROPERTIES AND ENERGY FUNCTIONS
    ERWIN, E
    OBERMAYER, K
    SCHULTEN, K
    [J]. BIOLOGICAL CYBERNETICS, 1992, 67 (01) : 47 - 55
  • [7] Explaining Explanations: An Overview of Interpretability of Machine Learning
    Gilpin, Leilani H.
    Bau, David
    Yuan, Ben Z.
    Bajwa, Ayesha
    Specter, Michael
    Kagal, Lalana
    [J]. 2018 IEEE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2018, : 80 - 89
  • [8] Hammer B., 2002, Vector quantization with rule extraction for mixed domain data
  • [9] Active learning in self-organizing maps
    Hasenjäger, M
    Ritter, H
    Obermayer, K
    [J]. KOHONEN MAPS, 1999, : 57 - 70
  • [10] Hebb D. O., 1949, A Wiley Book in Clinical Psychology