BORA: A Personalized Data Display for Large-Scale Experiments

被引:0
作者
Jerome, Nicholas Tan [1 ]
Dritschler, Timo [1 ]
Chilingaryan, Suren [1 ]
Kopmann, Andreas [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Data Proc & Elect, D-76344 Eggenstein Leopoldshafen, Germany
关键词
Monitoring; Data visualization; Streaming media; Visualization; Data acquisition; Streams; Real-time systems; Layout; Detectors; Process control; Data monitoring; high-speed data; web display;
D O I
10.1109/TNS.2024.3471071
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Given the rapid improvement of the detectors at high-energy physics experiments, the need for real-time data monitoring systems has become imperative. The significance of these systems lies in their ability to display experiment status, steer software and hardware instrumentation, and provide alarms, thus enabling researchers to manage their experiments better. Such systems commonly comprise multiple interacting parts: experiment and process control. There are multiple processing stages that record process data and derive information. And there is a component that communicates and displays the evaluated information to the operators. As the process control and data acquisition stages are usually specific to the experiment, it is common for researches to also build custom monitoring systems in unison with their data acquisition, leading to poor reusability for other experiments or future upgrades. This article presents BORA (personalized collaborative data display), a lightweight browser-based monitoring frontend that supports diverse data sources and is built specifically for customizable visualization of complex data, standardized via video streaming. It is shown how absolute positioning layout and visual overlay background can address the diverse data display design requirements. Integration of Jupyter Notebooks as part of the ecosystem addresses limitations of static web-based frameworks, providing a foundation to leverage scripting capabilities and integrate popular AI frameworks. Video streaming protocols like HTTP live streaming (HLS), web real-time communication (WebRTC), and MPEG-Websocket are used to forward visual outputs of remote processing and imaging pipelines of an experiment. The study explores the implications for these use cases, highlighting its potential to transform data visualization and decision-making processes.
引用
收藏
页码:498 / 505
页数:8
相关论文
共 48 条
[1]  
Abusleme A., 2021, arXiv
[2]   The design, construction, and commissioning of the KATRIN experiment [J].
Aker, M. ;
Altenmueller, K. ;
Amsbaugh, J. F. ;
Arenz, M. ;
Babutzka, M. ;
Bast, J. ;
Bauer, S. ;
Bechtler, H. ;
Beck, M. ;
Beglarian, A. ;
Behrens, J. ;
Bender, B. ;
Berendes, R. ;
Berlev, A. ;
Besserer, U. ;
Bettin, C. ;
Bieringer, B. ;
Blaum, K. ;
Block, F. ;
Bobien, S. ;
Boettcher, M. ;
Bohn, J. ;
Bokeloh, K. ;
Bolz, H. ;
Bornschein, B. ;
Bornschein, L. ;
Bouquet, H. ;
Boyd, N. M. ;
Brunst, T. ;
Burritt, T. H. ;
Caldwell, T. S. ;
Chaoui, Z. ;
Chilingaryan, S. ;
Choi, W. ;
Corona, T. J. ;
Cox, G. A. ;
Debowski, K. ;
Deffert, M. ;
Descher, M. ;
Barrero, D. Diaz ;
Doe, P. J. ;
Dragoun, O. ;
Drexlin, G. ;
Dunmore, J. A. ;
Dyba, S. ;
Edzards, F. ;
Eichelhardt, F. ;
Eitel, K. ;
Ellinger, E. ;
Engel, R. .
JOURNAL OF INSTRUMENTATION, 2021, 16 (08)
[3]  
Allan C, 2012, NAT METHODS, V9, P245, DOI [10.1038/NMETH.1896, 10.1038/nmeth.1896]
[4]   A Pipelining-based Framework for Processing Events in Multimedia Sensor Networks [J].
Angsuchotmetee, Chinnapong ;
Chbeir, Richard ;
Cardinale, Yudith ;
Yokoyama, Shohei .
33RD ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2018, :247-250
[5]   ROOT - A C++ framework for petabyte data storage, statistical analysis and visualization [J].
Antcheva, I. ;
Ballintijn, M. ;
Bellenot, B. ;
Biskup, M. ;
Brun, R. ;
Buncic, N. ;
Canal, Ph. ;
Casadei, D. ;
Couet, O. ;
Fine, V. ;
Franco, L. ;
Ganis, G. ;
Gheata, A. ;
Maline, D. Gonzalez ;
Goto, M. ;
Iwaszkiewicz, J. ;
Kreshuk, A. ;
Segura, D. Marcos ;
Maunder, R. ;
Moneta, L. ;
Naumann, A. ;
Offermann, E. ;
Onuchin, V. ;
Panacek, S. ;
Rademakers, F. ;
Russo, R. ;
Tadel, M. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) :2499-2512
[6]  
ATLAS collaboration, 2008, J INSTRUM, V3, DOI [DOI 10.1088/1748-0221/3/08/S08003, 10.1088/1748-0221/3/08/S08003]
[7]  
Au-Yeung J., 2021, Vue.js 3 by Example: Blueprints to Learn Vue Web Development, Full-Stack Development, and Cross-Platform Development Quickly
[8]   The Data Quality Monitoring Software for the CMS experiment at the LHC: past, present and future [J].
Azzolini, Virginia ;
van Broen, Besien ;
Bugelskis, Dmitrijus ;
Hreus, Tomas ;
Maeshima, Kaori ;
Fernandez Menendez, Javier ;
Norkus, Antanas ;
Patrick, James Fraser ;
Rovere, Marco ;
Schneider, Marcel Andre .
23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018), 2019, 214
[9]   Rucio: Scientific Data Management [J].
Barisits M. ;
Beermann T. ;
Berghaus F. ;
Bockelman B. ;
Bogado J. ;
Cameron D. ;
Christidis D. ;
Ciangottini D. ;
Dimitrov G. ;
Elsing M. ;
Garonne V. ;
di Girolamo A. ;
Goossens L. ;
Guan W. ;
Guenther J. ;
Javurek T. ;
Kuhn D. ;
Lassnig M. ;
Lopez F. ;
Magini N. ;
Molfetas A. ;
Nairz A. ;
Ould-Saada F. ;
Prenner S. ;
Serfon C. ;
Stewart G. ;
Vaandering E. ;
Vasileva P. ;
Vigne R. ;
Wegner T. .
Computing and Software for Big Science, 2019, 3 (1)
[10]   Implementation of ATLAS Distributed Computing monitoring dashboards using InfluxDB and Grafana [J].
Beermann, Thomas ;
Alekseev, Aleksandr ;
Baberis, Dario ;
Crepe-Renaudin, Sabine ;
Elmsheuser, Johannes ;
Glushkov, Ivan ;
Svatos, Michal ;
Vartapetian, Armen ;
Vokac, Petr ;
Wolters, Helmut .
24TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2019), 2020, 245