Predicting epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients through logistic regression: a model incorporating clinical characteristics, computed tomography (CT) imaging features, and tumor marker levels

被引:1
作者
Hao, Jimin [1 ]
Liu, Man [2 ,3 ,4 ]
Zhou, Zhigang [5 ]
Zhao, Chunling [1 ]
Dai, Liping [2 ,3 ]
Ouyang, Songyun [1 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, Dept Resp & Sleep Med, Zhengzhou, Henan, Peoples R China
[2] Zhengzhou Univ, Henan Inst Med & Pharmaceut Sci, Zhengzhou, Henan, Peoples R China
[3] Zhengzhou Univ, Henan Key Med Lab Tumor Mol Biomarkers, Zhengzhou, Henan, Peoples R China
[4] Henan Luoyang Orthoped Hosp, Henan Prov Orthoped Hosp, Lab Mol Biol, Zhengzhou, Henan, Peoples R China
[5] Zhengzhou Univ, Affiliated Hosp 1, Dept Radiol, Zhengzhou, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-small cell lung cancer (NSCLC); Epidermal growth factor receptor (EGFR); Clinical characteristics; CT imaging features; Tumor marker levels; Logistic regression; MOLECULAR EPIDEMIOLOGY; TARGETED THERAPIES; ADENOCARCINOMA; DIAGNOSIS; ALK; CEA;
D O I
10.7717/peerj.18618
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Approximately 60% of Asian populations with non-small cell lung cancer (NSCLC) harbor epidermal growth factor receptor (EGFR) gene mutations, marking it as a pivotal target for genotype-directed therapies. Currently, determining EGFR mutation status relies on DNA sequencing of histological or cytological specimens. This study presents a predictive model integrating clinical parameters, computed tomography (CT) characteristics, and serum tumor markers to forecast EGFR mutation status in NSCLC patients. Methods: Retrospective data collection was conducted on NSCLC patients diagnosed between January 2018 and June 2019 at the First Affiliated Hospital of Zhengzhou University, with available molecular pathology results. Clinical information, CT imaging features, and serum tumor marker levels were compiled. Four distinct models were employed in constructing the diagnostic model. Model diagnostic efficacy was assessed through receiver operating characteristic (ROC) area under the curve (AUC) values and calibration curves. DeLong's test was administered to validate model robustness. Results: Our study encompassed 748 participants. Logistic regression modeling, trained with the aforementioned variables, demonstrated remarkable predictive capability, achieving an AUC of 0.805 (95% confidence interval (CI) [0.766-0.844]) in the primary cohort and 0.753 (95% CI [0.687-0.818]) in the validation cohort. Calibration plots suggested a favorable fi t of the model to the data. Conclusions: The developed logistic regression model emerges as a promising tool for forecasting EGFR mutation status. It holds potential to aid clinicians in more precisely identifying patients likely to benefit from EGFR molecular testing and facilitating targeted therapy decision-making, particularly in scenarios where molecular testing is impractical or inaccessible.
引用
收藏
页数:21
相关论文
共 42 条
[31]   Detection of EGFR-TK Domain-activating Mutations in NSCLC With Generic PCR-based Methods [J].
Shahi, Rajendra B. ;
De Brakeleer, Sylvia ;
De Greve, Jacques ;
Geers, Caroline ;
In't Veld, Peter ;
Teugels, Erik .
APPLIED IMMUNOHISTOCHEMISTRY & MOLECULAR MORPHOLOGY, 2015, 23 (03) :163-171
[32]   A Prospective, Molecular Epidemiology Study of EGFR Mutations in Asian Patients with Advanced Non-Small-Cell Lung Cancer of Adenocarcinoma Histology (PIONEER) [J].
Shi, Yuankai ;
Au, Joseph Siu-Kie ;
Thongprasert, Sumitra ;
Srinivasan, Sankar ;
Tsai, Chun-Ming ;
Khoa, Mai Trong ;
Heeroma, Karin ;
Itoh, Yohji ;
Cornelio, Gerardo ;
Yang, Pan-Chyr .
JOURNAL OF THORACIC ONCOLOGY, 2014, 9 (02) :154-162
[33]  
Siegel RL, 2023, CA-CANCER J CLIN, V73, P17, DOI [10.3322/caac.21763, 10.3322/caac.21820]
[34]   Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].
Sung, Hyuna ;
Ferlay, Jacques ;
Siegel, Rebecca L. ;
Laversanne, Mathieu ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin ;
Bray, Freddie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2021, 71 (03) :209-249
[35]   EGFR inhibitors as adjuvant therapy for resected non-small cell lung cancer harboring EGFR mutations [J].
Tang, Wenjie ;
Li, Xiaolin ;
Xi, Xueqi ;
Sun, Xindong ;
Liu, Jie ;
Zhang, Jian ;
Wang, Chungang ;
Yu, Jinming ;
Xie, Peng .
LUNG CANCER, 2019, 136 :6-14
[36]   Lung cancer [J].
Thai, Alesha A. ;
Solomon, Benjamin J. ;
Sequist, Lecia, V ;
Gainor, Justin F. ;
Heist, Rebecca S. .
LANCET, 2021, 398 (10299) :535-554
[37]   Predicting EGFR and PD-L1 Status in NSCLC Patients Using Multitask AI System Based on CT Images [J].
Wang, Chengdi ;
Ma, Jiechao ;
Shao, Jun ;
Zhang, Shu ;
Liu, Zhongnan ;
Yu, Yizhou ;
Li, Weimin .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[38]   Detection of EGFR mutations in plasma and biopsies from non-small cell lung cancer patients by allele-specific PCR assays [J].
Weber, Britta ;
Meldgaard, Peter ;
Hager, Henrik ;
Wu, Lin ;
Wei, Wen ;
Tsai, Julie ;
Khalil, Azza ;
Nexo, Ebba ;
Sorensen, Boe S. .
BMC CANCER, 2014, 14
[39]   PET/CT Radiomic Features: A Potential Biomarker for EGFR Mutation Status and Survival Outcome Prediction in NSCLC Patients Treated With TKIs [J].
Yang, Liping ;
Xu, Panpan ;
Li, Mengyue ;
Wang, Menglu ;
Peng, Mengye ;
Zhang, Ying ;
Wu, Tingting ;
Chu, Wenjie ;
Wang, Kezheng ;
Meng, Hongxue ;
Zhang, Lingbo .
FRONTIERS IN ONCOLOGY, 2022, 12
[40]   Clinical characterization of node-negative lung adenocarcinoma: Results of a prospective investigation [J].
Yoshino, Ichiro ;
Ichinose, Yukito ;
Nagashima, Akira ;
Takeo, Sadanori ;
Motohiro, Akira ;
Yano, Tokujiro ;
Yokoyama, Hideki ;
Ueda, Hitoshi ;
Sugio, Kenji ;
Ishida, Teruyoshi ;
Yasumoto, Kosei ;
Maehara, Yoshihiko .
JOURNAL OF THORACIC ONCOLOGY, 2006, 1 (08) :825-831