Predicting epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients through logistic regression: a model incorporating clinical characteristics, computed tomography (CT) imaging features, and tumor marker levels

被引:1
作者
Hao, Jimin [1 ]
Liu, Man [2 ,3 ,4 ]
Zhou, Zhigang [5 ]
Zhao, Chunling [1 ]
Dai, Liping [2 ,3 ]
Ouyang, Songyun [1 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, Dept Resp & Sleep Med, Zhengzhou, Henan, Peoples R China
[2] Zhengzhou Univ, Henan Inst Med & Pharmaceut Sci, Zhengzhou, Henan, Peoples R China
[3] Zhengzhou Univ, Henan Key Med Lab Tumor Mol Biomarkers, Zhengzhou, Henan, Peoples R China
[4] Henan Luoyang Orthoped Hosp, Henan Prov Orthoped Hosp, Lab Mol Biol, Zhengzhou, Henan, Peoples R China
[5] Zhengzhou Univ, Affiliated Hosp 1, Dept Radiol, Zhengzhou, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-small cell lung cancer (NSCLC); Epidermal growth factor receptor (EGFR); Clinical characteristics; CT imaging features; Tumor marker levels; Logistic regression; MOLECULAR EPIDEMIOLOGY; TARGETED THERAPIES; ADENOCARCINOMA; DIAGNOSIS; ALK; CEA;
D O I
10.7717/peerj.18618
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Approximately 60% of Asian populations with non-small cell lung cancer (NSCLC) harbor epidermal growth factor receptor (EGFR) gene mutations, marking it as a pivotal target for genotype-directed therapies. Currently, determining EGFR mutation status relies on DNA sequencing of histological or cytological specimens. This study presents a predictive model integrating clinical parameters, computed tomography (CT) characteristics, and serum tumor markers to forecast EGFR mutation status in NSCLC patients. Methods: Retrospective data collection was conducted on NSCLC patients diagnosed between January 2018 and June 2019 at the First Affiliated Hospital of Zhengzhou University, with available molecular pathology results. Clinical information, CT imaging features, and serum tumor marker levels were compiled. Four distinct models were employed in constructing the diagnostic model. Model diagnostic efficacy was assessed through receiver operating characteristic (ROC) area under the curve (AUC) values and calibration curves. DeLong's test was administered to validate model robustness. Results: Our study encompassed 748 participants. Logistic regression modeling, trained with the aforementioned variables, demonstrated remarkable predictive capability, achieving an AUC of 0.805 (95% confidence interval (CI) [0.766-0.844]) in the primary cohort and 0.753 (95% CI [0.687-0.818]) in the validation cohort. Calibration plots suggested a favorable fi t of the model to the data. Conclusions: The developed logistic regression model emerges as a promising tool for forecasting EGFR mutation status. It holds potential to aid clinicians in more precisely identifying patients likely to benefit from EGFR molecular testing and facilitating targeted therapy decision-making, particularly in scenarios where molecular testing is impractical or inaccessible.
引用
收藏
页数:21
相关论文
共 42 条
[1]  
Ahmad A, 2016, ADV EXP MED BIOL, V890, pV
[2]  
BYERS TE, 1984, JNCI-J NATL CANCER I, V72, P1271
[3]   Development and validation of a model to predict tyrosine kinase inhibitor-sensitive EGFR mutations of non-small cell lung cancer based on multi-institutional data [J].
Chang, Hui ;
Liu, Yuan-Bin ;
Yi, Wei ;
Lu, Jia-Bin ;
Zhang, Jie-Xia .
THORACIC CANCER, 2018, 9 (12) :1680-1686
[4]   Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers [J].
Chapman, Aaron M. ;
Sun, Kathie Y. ;
Ruestow, Peter ;
Cowan, Dallas M. ;
Madl, Amy K. .
LUNG CANCER, 2016, 102 :122-134
[5]   Prediction of EGFR mutations by conventional CT-features in advanced pulmonary adenocarcinoma [J].
Chen, Yanqing ;
Yang, Yang ;
Ma, Longbai ;
Zhu, Huiyuan ;
Feng, Tienan ;
Jiang, Sen ;
Wei, Youyong ;
Wang, Tingting ;
Sun, Xiwen .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 112 :44-51
[6]   Amivantamab plus Lazertinib in Previously Untreated EGFR-Mutated Advanced NSCLC [J].
Cho, Byoung C. ;
Lu, Shun ;
Felip, Enriqueta ;
Spira, Alexander I. ;
Girard, Nicolas ;
Lee, Jong-Seok ;
Lee, Se-Hoon ;
Ostapenko, Yurii ;
Danchaivijitr, Pongwut ;
Liu, Baogang ;
Alip, Adlinda ;
Korbenfeld, Ernesto ;
Mourao Dias, Josiane ;
Besse, Benjamin ;
Lee, Ki-Hyeong ;
Xiong, Hailin ;
How, Soon-Hin ;
Cheng, Ying ;
Chang, Gee-Chen ;
Yoshioka, Hiroshige ;
Yang, James C. -H. ;
Thomas, Michael ;
Nguyen, Danny ;
Ou, Sai-Hong I. ;
Mukhedkar, Sanjay ;
Prabhash, Kumar ;
D'Arcangelo, Manolo ;
Alatorre-Alexander, Jorge ;
Vazquez Limon, Juan C. ;
Alves, Sara ;
Stroyakovskiy, Daniil ;
Peregudova, Marina ;
Sendur, Mehmet A. N. ;
Yazici, Ozan ;
Califano, Raffaele ;
Gutierrez Calderon, Vanesa ;
de Marinis, Filippo ;
Passaro, Antonio ;
Kim, Sang-We ;
Gadgeel, Shirish M. ;
Xie, John ;
Sun, Tao ;
Martinez, Melissa ;
Ennis, Mariah ;
Fennema, Elizabeth ;
Daksh, Mahesh ;
Millington, Dawn ;
Leconte, Isabelle ;
Iwasawa, Ryota ;
Lorenzini, Patricia .
NEW ENGLAND JOURNAL OF MEDICINE, 2024, 391 (16) :1486-1498
[7]   Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) The TRIPOD Statement [J].
Collins, Gary S. ;
Reitsma, Johannes B. ;
Altman, Douglas G. ;
Moons, Karel G. M. .
CIRCULATION, 2015, 131 (02) :211-219
[8]   Clinical and radiological predictors of epidermal growth factor receptor mutation in nonsmall cell lung cancer [J].
Dang, Yutao ;
Wang, Ruotian ;
Qian, Kun ;
Lu, Jie ;
Zhang, Haixiang ;
Zhang, Yi .
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2021, 22 (01) :271-280
[9]   Detection of plasma EGFR mutations for personalized treatment of lung cancer patients without pathologic diagnosis [J].
Deng, Qinfang ;
Fang, Qiyu ;
Sun, Hui ;
Singh, Aditi P. ;
Alexander, Mariam ;
Li, Shenduo ;
Cheng, Haiying ;
Zhou, Songwen .
CANCER MEDICINE, 2020, 9 (06) :2085-2095
[10]   Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment [J].
Duma, Narjust ;
Santana-Davila, Rafael ;
Molina, Julian R. .
MAYO CLINIC PROCEEDINGS, 2019, 94 (08) :1623-1640