Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 2: recommendations for standardisation, validation, and good clinical practice

被引:7
作者
Bakas, Spyridon [1 ,2 ,3 ,4 ,5 ,6 ]
Vollmuth, Philipp [7 ,8 ,9 ]
Galldiks, Norbert [10 ,11 ,12 ]
Booth, Thomas C. [13 ,14 ]
Aerts, Hugo J. W. L. [15 ,17 ,18 ]
Bi, Wenya Linda [16 ]
Wiestler, Benedikt [19 ]
Tiwari, Pallavi [20 ]
Pati, Sarthak [1 ]
Baid, Ujjwal [1 ,2 ,5 ]
Calabrese, Evan [21 ]
Lohmann, Philipp [10 ,11 ,23 ]
Nowosielski, Martha [24 ]
Jain, Rajan [25 ,26 ]
Colen, Rivka [27 ]
Ismail, Marwa [20 ]
Rasool, Ghulam [34 ]
Lupo, Janine M. [21 ]
Akbari, Hamed [28 ]
Tonn, Joerg C. [29 ,30 ]
Macdonald, David [31 ]
Vogelbaum, Michael [32 ,33 ,35 ]
Chang, Susan M. [22 ]
Davatzikos, Christos [36 ,37 ,38 ]
Villanueva-Meyer, Javier E. [21 ]
Huang, Raymond Y. [15 ]
机构
[1] Indiana Univ, Dept Pathol & Lab Med, Div Computat Pathol, Indianapolis, IN 46202 USA
[2] Indiana Univ, Sci Sch Med, Dept Radiol & Imaging Sci, Indianapolis, IN USA
[3] Indiana Univ Sch Med, Dept Neurol Surg, Indianapolis, IN USA
[4] Indiana Univ, Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USA
[5] Indiana Univ, Melvin & Bren Simon Comprehens Canc Ctr, Indianapolis, IN USA
[6] Indiana Univ, Luddy Sch Informat Comp & Engn, Comp Sci Dept, Bloomington, IN USA
[7] Bonn Univ Hosp, Div Computat Radiol & Clin AI, Div Computat Radiol & Clin AI, Bonn, Germany
[8] Univ Bonn, Fac Med, Bonn, Germany
[9] German Canc Res Ctr, Div Med Image Comp, Heidelberg, Germany
[10] Fac Med, Dept Neurol, Cologne, Germany
[11] Univ Hosp Cologne, Cologne, Germany
[12] Res Ctr Juelich, Inst Neurosci & Med, Julich, Germany
[13] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[14] Kings Coll Hosp NHS Fdn Trust, Dept Neuroradiol, London, England
[15] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA USA
[16] Harvard Med Sch, Brigham & Womens Hosp, Dept Neurosurg, Boston, MA USA
[17] Harvard Med Sch, Artificial Intelligence Med Program, Mass Gen Brigham, Boston, MA USA
[18] Maastricht Univ, Radiol & Nucl Med, Maastricht, Netherlands
[19] Tech Univ Munich, Univ Hosp, Dept Neuroradiol, Munich, Germany
[20] Univ Wisconsin, Sch Med & Publ Hlth, Dept Radiol, Madison, WI USA
[21] Duke Univ, Sch Med, Dept Radiol, Durham, NC USA
[22] Univ Calif San Francisco, Dept Neurol Surg, Div Neurooncol, San Francisco, CA USA
[23] Univ Hosp RWTH Aachen, Dept Nucl Med, Aachen, Germany
[24] Med Univ Innsbruck, Dept Neurol, Innsbruck, Austria
[25] NYU, Dept Radiol, Grossman Sch Med, New York, NY USA
[26] NYU, Dept Neurosurg, Grossman Sch Med, New York, NY USA
[27] Univ Pittsburgh, Dept Radiol, Med Ctr, Neuroradiol Div, Pittsburgh, PA 15260 USA
[28] Santa Clara Univ, Dept Gen Engn, Santa Clara, CA USA
[29] Ludwig Maximilians Univ Munchen, Dept Neurosurg, Munich, Germany
[30] German Canc Consortium, Partner Site Munich, Munich, Germany
[31] London Reg Canc Programme, London, ON, Canada
[32] H Lee Moffitt Canc Ctr & Res Inst, Dept Neurooncol, Tampa, FL USA
[33] H Lee Moffitt Canc Ctr & Res Inst, Dept Neurosurg, Tampa, FL USA
[34] H Lee Moffitt Canc Ctr & Res Inst, Dept Machine Learning, Tampa, FL USA
[35] H Lee Moffitt Canc Ctr & Res Inst, Tampa, FL USA
[36] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA USA
[37] Univ Penn, Ctr Artificial Intelligence Integrated Diagnost, Philadelphia, PA USA
[38] Univ Penn, Ctr Biomed Image Comp & Analyt, Philadelphia, PA USA
基金
英国工程与自然科学研究理事会; 英国医学研究理事会; 欧洲研究理事会;
关键词
MGMT PROMOTER METHYLATION; CENTRAL-NERVOUS-SYSTEM; BRAIN-TUMORS; PATTERN-ANALYSIS; GLIOBLASTOMA; SURVIVAL; FEATURES; GLIOMA; MRI; CLASSIFICATION;
D O I
10.1016/S1470-2045(24)00315-2
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Technological advancements have enabled the extended investigation, development, and application of computational approaches in various domains, including health care. A burgeoning number of diagnostic, predictive, prognostic, and monitoring biomarkers are continuously being explored to improve clinical decision making in neuro-oncology. These advancements describe the increasing incorporation of artificial intelligence (AI) algorithms, including the use of radiomics. However, the broad applicability and clinical translation of AI are restricted by concerns about generalisability, reproducibility, scalability, and validation. This Policy Review intends to serve as the leading resource of recommendations for the standardisation and good clinical practice of AI approaches in health care, particularly in neuro-oncology. To this end, we investigate the repeatability, reproducibility, and stability of AI in response assessment in neuro-oncology in studies on factors affecting such computational approaches, and in publicly available opensource data and computational software tools facilitating these goals. The pathway for standardisation and validation of these approaches is discussed with the view of trustworthy AI enabling the next generation of clinical trials. We conclude with an outlook on the future of AI-enabled neuro-oncology.
引用
收藏
页码:e589 / e601
页数:13
相关论文
共 122 条
[1]  
Akbari H, 2023, Neuro-Oncol, V25, pv88
[2]   Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma [J].
Akbari, Hamed ;
Rathore, Saima ;
Bakas, Spyridon ;
Nasrallah, MacLean P. ;
Shukla, Gaurav ;
Mamourian, Elizabeth ;
Rozycki, Martin ;
Bagley, Stephen J. ;
Rudie, Jeffrey D. ;
Flanders, Adam E. ;
Dicker, Adam P. ;
Desai, Arati S. ;
O'Rourke, Donald M. ;
Brem, Steven ;
Lustig, Robert ;
Mohan, Suyash ;
Wolf, Ronald L. ;
Bilello, Michel ;
Martinez-Lage, Maria ;
Davatzikos, Christos .
CANCER, 2020, 126 (11) :2625-2636
[3]   Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma [J].
Akbari, Hamed ;
Macyszyn, Luke ;
Da, Xiao ;
Bilello, Michel ;
Wolf, Ronald L. ;
Martinez-Lage, Maria ;
Biros, George ;
Alonso-Basanta, Michelle ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
NEUROSURGERY, 2016, 78 (04) :572-580
[4]   Pattern Analysis of Dynamic Susceptibility Contrast-enhanced MR Imaging Demonstrates Peritumoral Tissue Heterogeneity [J].
Akbari, Hamed ;
Macyszyn, Luke ;
Da, Xiao ;
Wolf, Ronald L. ;
Bilello, Michel ;
Verma, Ragini ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
RADIOLOGY, 2014, 273 (02) :502-510
[5]   In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature [J].
Akbari, Named ;
Bakas, Spyridon ;
Pisapia, Jared M. ;
Nasrallah, MacLean P. ;
Rozycki, Martin ;
Martinez-Lage, Maria ;
Morrissette, Jennifer J. D. ;
Bilello, Michel ;
Dahmane, Nadia ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
NEURO-ONCOLOGY, 2018, 20 (08) :1068-1079
[6]   Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence [J].
Akkus, Zeynettin ;
Ali, Issa ;
Sedlar, Jiri ;
Agrawal, Jay P. ;
Parney, Ian F. ;
Giannini, Caterina ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :469-476
[7]   Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium [J].
Aldape, Kenneth ;
Amin, Samirkumar B. ;
Ashley, David M. ;
Barnholtz-Sloan, Jill S. ;
Bates, Amanda J. ;
Beroukhim, Rameen ;
Bock, Christoph ;
Brat, Daniel J. ;
Claus, Elizabeth B. ;
Costello, Joseph F. ;
de Groot, John F. ;
Finocchiaro, Gaetano ;
French, Pim J. ;
Gan, Hui K. ;
Griffith, Brent ;
Herold-Mende, Christel C. ;
Horbinski, Craig ;
Iavarone, Antonio ;
Kalkanis, Steven N. ;
Karabatsou, Konstantina ;
Kim, Hoon ;
Kouwenhoven, Mathilde C. M. ;
McDonald, Kerrie L. ;
Miletic, Hrvoje ;
Nam, Do-Hyun ;
Ng, Ho Keung ;
Niclou, Simone P. ;
Noushmehr, Houtan ;
Ormond, D. Ryan ;
Poisson, Laila M. ;
Reifenberger, Guido ;
Roncaroli, Federico ;
Sa, Jason K. ;
Smitt, Peter A. E. Sillevis ;
Smits, Marion ;
Souza, Camila F. ;
Tabatabai, Ghazaleh ;
Van Meir, Erwin G. ;
Verhaak, Roel G. W. ;
Watts, Colin ;
Wesseling, Pieter ;
Woehrer, Adelheid ;
Yung, W. K. Alfred ;
Jungk, Christine ;
Hau, Ann-Christin ;
van Dyck, Eric ;
Westerman, Bait A. ;
Yin, Julia ;
Abiola, Olajide ;
Zeps, Nikolaj .
NEURO-ONCOLOGY, 2018, 20 (07) :873-884
[8]   Robustness and Reproducibility of Radiomics in Magnetic Resonance Imaging A Phantom Study [J].
Baessler, Bettina ;
Weiss, Kilian ;
dos Santos, Daniel Pinto .
INVESTIGATIVE RADIOLOGY, 2019, 54 (04) :221-228
[9]  
Baheti B, 2024, Arxiv, DOI [arXiv:2112.06979, DOI 10.48550/ARXIV.2112.06979]
[10]  
Baid U, 2021, Arxiv, DOI [arXiv:2107.02314, 10.48550/arXiv:2107.02314]