Tomographic constraints on the production rate of gravitational waves from astrophysical sources

被引:0
|
作者
Alonso, David [1 ]
Nikjoo, Mehraveh [2 ]
Renzini, Arianna I. [3 ,4 ]
Bellini, Emilio [5 ,6 ,7 ]
Ferreira, Pedro G. [1 ]
机构
[1] Univ Oxford, Dept Phys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England
[2] Univ Gdansk, Inst Theoret Phys & Astrophys, PL-80308 Gdansk, Poland
[3] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Piazza Sci 3, I-20126 Milan, Italy
[4] INFN, Sez Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy
[5] SISSA, Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
[6] Inst Fundamental Phys Universe, IFPU, Via Beirut 2, I-34014 Trieste, Italy
[7] Natl Inst Nucl Phys, INFN, Via Valerio 2, I-34127 Trieste, Italy
基金
欧盟地平线“2020”;
关键词
D O I
10.1103/PhysRevD.110.103544
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using an optimal quadratic estimator, we measure the large-scale cross-correlation between maps of the stochastic gravitational-wave intensity, constructed from the first three LIGO-Virgo observing runs, and a suite of tomographic samples of galaxies covering the redshift range z less than or similar to 2. We do not detect any statistically significant cross-correlation, but the tomographic nature of the data allows us to place constraints on the (bias-weighted) production rate density of gravitational waves by astrophysical sources as a function of cosmic time. Our constraints range from < b(Omega)over dot(GW)> <3.0 x 10(-9) Gyr(-1) at z similar to 0.06 to < b(Omega)over dot(GW)> <2.7 x 10(-7) Gyr(-1) at z similar to 1.5 (95% confidence level), assuming a frequency spectrum of the form f(2/3) (corresponding to an astrophysical background of binary mergers), and a reference frequency f(ref) = 25 Hz. Although these constraints are similar to 2 orders of magnitude higher than the expected signal, we show that a detection may be possible with future experiments.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] GRAVITATIONAL WAVES FROM ISOLATED SOURCES
    BONNOR, WB
    ROTENBER.MA
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 289 (1417): : 247 - &
  • [12] Preheating constraints in α-attractor inflation and gravitational waves production
    El Bourakadi, K.
    Sakhi, Z.
    Bennai, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (17):
  • [13] ASTROPHYSICAL ASPECTS OF GRAVITATIONAL-WAVES
    REES, MJ
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1973, 224 (DEC14) : 118 - 124
  • [14] Astrophysical meaning of the discovery of gravitational waves
    Lipunov, V. M.
    PHYSICS-USPEKHI, 2016, 59 (09) : 918 - 928
  • [15] ASTROPHYSICAL SOURCES OF GRAVITATIONAL-RADIATION
    BONAZZOLA, S
    MARCK, JA
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, 1994, 44 : 655 - 717
  • [16] Astrophysical gravitational waves in conformal gravity
    Caprini, Chiara
    Hoelscher, Patric
    Schwarz, Dominik J.
    PHYSICAL REVIEW D, 2018, 98 (08)
  • [17] Radio waves and γ-ray emission from astrophysical sources
    Almaliev A.N.
    Kopytin I.V.
    Lisovoi S.A.
    Bulletin of the Russian Academy of Sciences: Physics, 2008, 72 (03) : 278 - 282
  • [18] Sources of gravitational waves
    Schutz, BF
    ASTRONOMY, COSMOLOGY AND FUNDAMENTAL PHYSICS, PROCEEDINGS, 2003, : 271 - 281
  • [19] Sources of gravitational waves
    Ferrari, V
    COSMOLOGY AND PARTICLE PHYSICS, 2001, 555 : 253 - 262
  • [20] Sources of gravitational waves
    Lobo, JA
    GENERAL RELATIVITY, 1996, 46 : 203 - 222