LSTM Network and Box and Jenkins Methodology for Time Series Forecasting: Solar Energy Production

被引:0
作者
Riahi, Mohamed Hedi [1 ]
Maalaoui, Hiba [1 ]
Hedhli, Amel [1 ]
Ncib, Lotfi [2 ]
机构
[1] ESPRIT Sch Engn, Ariana, Tunisia
[2] RIDCHADATA, Montigny Le Bretonneux, France
来源
PROCEEDING OF THE 7TH INTERNATIONAL CONFERENCE ON LOGISTICS OPERATIONS MANAGEMENT, GOL 2024, VOL 1 | 2024年 / 1104卷
关键词
Time series; Predictions; Box and Jenkins method; solar energy; deep learning LSTM network;
D O I
10.1007/978-3-031-68628-3_5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Solar power generation experiences a significant surge, the forecasting of incoming solar energy is becoming increasingly crucial. The aim of this study is twofold. First, it aims to show how to overcome some of the shortcomings of standard methods of forecasting solar energy production using time series models and to propose an alternative empirical approach based on Recurrent neural network (LSTM algorithm). Secondly, it aims to fill the research gaps in forecasting in the Sfax region. In this regard, for the production of solar energy from June 2019 to March 2020, we use the ARIMA model for solar energy forecasting. Based on the metrics, we evaluate the effectiveness of time series models. By implementing the LSTM method, we note that, empirically, the LSTM models give better results in forecasting solar energy production for the Sfax region.
引用
收藏
页码:46 / 55
页数:10
相关论文
共 14 条
[1]  
ANDERSON OD, 1977, RAIRO-RECH OPER, V11, P3
[2]   The HARMONIE-AROME Model Configuration in the ALADIN-HIRLAM NWP System [J].
Bengtsson, Lisa ;
Andrae, Ulf ;
Aspelien, Trygve ;
Batrak, Yurii ;
Calvo, Javier ;
de Rooy, Wim ;
Gleeson, Emily ;
Hansen-Sass, Bent ;
Homleid, Mariken ;
Hortal, Mariano ;
Ivarsson, Karl-Ivar ;
Lenderink, Geert ;
Niemelza, Sami ;
Nielsen, Kristian Pagh ;
Onvlee, Jeanette ;
Rontu, Laura ;
Samuelsson, Patrick ;
Santos Munoz, Daniel ;
Subias, Alvaro ;
Tijm, Sander ;
Toll, Velle ;
Yang, Xiaohua ;
Koltzow, Morten Odegaard .
MONTHLY WEATHER REVIEW, 2017, 145 (05) :1919-1935
[3]   Model ALADIN as regional climate model for Central and Eastern Europe [J].
Farda, Ales ;
Deque, Michel ;
Somot, Samuel ;
Horanyi, Andras ;
Spiridonov, Valery ;
Toth, Helga .
STUDIA GEOPHYSICA ET GEODAETICA, 2010, 54 (02) :313-332
[4]   Prediction of solar energy guided by pearson correlation using machine learning [J].
Jebli, Imane ;
Belouadha, Fatima-Zahra ;
Kabbaj, Mohammed Issam ;
Tilioua, Amine .
ENERGY, 2021, 224
[5]  
Kazem H. A., 2016, INT J APPL ENG RES, V11, P10166, DOI DOI 10.19026/RJASET.13.2936
[6]   Machine Learning-Based Approach to Predict Energy Consumption of Renewable and Nonrenewable Power Sources [J].
Khan, Prince Waqas ;
Byun, Yung-Cheol ;
Lee, Sang-Joon ;
Kang, Dong-Ho ;
Kang, Jin-Young ;
Park, Hae-Su .
ENERGIES, 2020, 13 (18)
[7]   A Survey of Machine Learning Models in Renewable Energy Predictions [J].
Lai, Jung-Pin ;
Chang, Yu-Ming ;
Chen, Chieh-Huang ;
Pai, Ping-Feng .
APPLIED SCIENCES-BASEL, 2020, 10 (17)
[8]   EA-LSTM: Evolutionary attention-based LSTM for time series prediction [J].
Li, Youru ;
Zhu, Zhenfeng ;
Kong, Deqiang ;
Han, Hua ;
Zhao, Yao .
KNOWLEDGE-BASED SYSTEMS, 2019, 181
[9]  
Makridakis S, 1997, J FORECASTING, V16, P147, DOI 10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO
[10]  
2-X