Optimization of CRISPR/Cas9 Gene Editing System in Sheep (Ovis aries) Oocytes via Microinjection

被引:0
|
作者
Wang, Haitao [1 ]
Yang, Hengqian [1 ,2 ]
Li, Tingting [1 ]
Chen, Yan [1 ]
Chen, Jieran [1 ]
Zhang, Xiaosheng [3 ,4 ]
Zhang, Jinlong [3 ,4 ]
Zhang, Yuting [1 ]
Zhang, Na [1 ]
Ma, Runlin [1 ]
Huang, Xun [1 ]
Liu, Qiuyue [1 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Mol Dev Biol, Beijing 100101, Peoples R China
[2] Qingdao Agr Univ, Coll Anim Sci & Technol, Qingdao 266109, Peoples R China
[3] Tianjin Acad Agr Sci, Inst Anim Sci & Vet, Tianjin 300381, Peoples R China
[4] Tianjin Key Lab Anim Mol Breeding & Biotechnol, Tianjin 300381, Peoples R China
关键词
CRISPR/Cas9; microinjection; gene editing; sheep; KNOCKOUT SHEEP; GENERATION; LIVESTOCK;
D O I
10.3390/ijms26031065
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The CRISPR/Cas9 system has become a powerful tool for molecular design breeding in livestock such as sheep. However, the efficiency of the Cas9 system combined with zygote microinjection remains suboptimal. In this study, mature sheep oocytes were used for microinjection to assess the impact of various factors on Cas9 editing efficiency. We found that the in vitro maturation efficiency of oocytes is related to environmental factors such as air temperature, pressure, and humidity. Our results indicate that high-efficiency gene editing can be achieved when targeting the SOCS2, DYA, and TBXT, using a microinjection mixture with a concentration of 10 ng/mu L Cas9 and sgRNA. By optimizing the injection capillary, we significantly reduced the oocyte invalidation rate post-microinjection to 3.1-5.3%. Furthermore, we observed that using either Cas9 protein or mRNA in the microinjection process resulted in different genotypes in the edited oocytes. Importantly, parthenogenetic activation did not appear to affect the editing efficiency. Using this high-efficiency system, we successfully generated SOCS2 or DYA gene-edited sheep, with all lambs confirmed to be genetically modified. This study presents a highly efficient method for producing gene-edited sheep, potentially enabling more precise and effective strategies for livestock breeding.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] The enhancement of CRISPR/Cas9 gene editing using metformin
    Rollins, Jaedyn L.
    Hall, Raquel M.
    Lemus, Clara J.
    Leisten, Lauren A.
    Johnston, Jennifer M.
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2023, 35
  • [32] Delivery methods for CRISPR/Cas9 gene editing in crustaceans
    Xu, Sen
    Pham, Thinh
    Neupane, Swatantra
    MARINE LIFE SCIENCE & TECHNOLOGY, 2020, 2 (01) : 1 - 5
  • [33] Therapeutic gene editing in haematological disorders with CRISPR/Cas9
    Jensen, Trine I.
    Axelgaard, Esben
    Bak, Rasmus O.
    BRITISH JOURNAL OF HAEMATOLOGY, 2019, 185 (05) : 821 - 835
  • [34] Microinjection of the CRISPR/Cas9 editing system through the germ pore of a wheat microspore induces mutations in the target Ms2 gene
    Szabala, Bartosz M.
    Swiecicka, Magdalena
    Lyznik, Leszek A.
    MOLECULAR BIOLOGY REPORTS, 2024, 51 (01)
  • [35] Delivery methods for CRISPR/Cas9 gene editing in crustaceans
    Sen Xu
    Thinh Phu Pham
    Swatantra Neupane
    Marine Life Science & Technology, 2020, 2 : 1 - 5
  • [36] Insights into maize genome editing via CRISPR/Cas9
    Astha Agarwal
    Pranjal Yadava
    Krishan Kumar
    Ishwar Singh
    Tanushri Kaul
    Arunava Pattanayak
    Pawan Kumar Agrawal
    Physiology and Molecular Biology of Plants, 2018, 24 : 175 - 183
  • [37] Lipid and polymer mediated CRISPR/Cas9 gene editing
    Gong, Yan
    Tian, Siyu
    Xuan, Yang
    Zhang, Shubiao
    JOURNAL OF MATERIALS CHEMISTRY B, 2020, 8 (20) : 4369 - 4386
  • [38] Recent advances in the delivery and applications of nonviral CRISPR/Cas9 gene editing
    Sinclair, Frazer
    Begum, Anjuman A.
    Dai, Charles C.
    Toth, Istvan
    Moyle, Peter M.
    DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2023, 13 (5) : 1500 - 1519
  • [39] Recent advances in the delivery and applications of nonviral CRISPR/Cas9 gene editing
    Frazer Sinclair
    Anjuman A. Begum
    Charles C. Dai
    Istvan Toth
    Peter M. Moyle
    Drug Delivery and Translational Research, 2023, 13 : 1500 - 1519
  • [40] Current applications and future perspective of CRISPR/Cas9 gene editing in cancer
    Si-Wei Wang
    Chao Gao
    Yi-Min Zheng
    Li Yi
    Jia-Cheng Lu
    Xiao-Yong Huang
    Jia-Bin Cai
    Peng-Fei Zhang
    Yue-Hong Cui
    Ai-Wu Ke
    Molecular Cancer, 21