Voxel-level radiomics and deep learning for predicting pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant immunotherapy and chemotherapy

被引:2
作者
Zhang, Zhen [1 ,2 ]
Luo, Tianchen [3 ]
Yan, Meng [2 ,4 ]
Shen, Haixia [1 ]
Tao, Kaiyi [1 ]
Zeng, Jian [1 ]
Yuan, Jingping [5 ]
Fang, Min [1 ]
Zheng, Jian [4 ]
Bermejo, Inigo [6 ]
Dekker, Andre [2 ]
Ruysscher, Dirk De [2 ]
Wee, Leonard [2 ]
Zhang, Wencheng [4 ]
Jiang, Youhua [1 ]
Ji, Yongling [1 ,7 ]
机构
[1] Chinese Acad Sci, Zhejiang Canc Hosp, Hangzhou Inst Med HIM, Hangzhou, Zhejiang, Peoples R China
[2] Maastricht Univ, Med Ctr, GROW Res Inst Oncol & Reprod, Dept Radiat Oncol Maastro, Maastricht, Netherlands
[3] Natl Univ Singapore, Singapore, Singapore
[4] Tianjin Med Univ Canc Inst & Hosp, Natl Clin Res Ctr Canc, Tianjins Clin Res Ctr Canc, Dept Radiat Oncol,Key Lab Canc Prevent & Therapy, Tianjin, Peoples R China
[5] Wuhan Univ, Renmin Hosp, Dept Pathol, Wuhan, Hubei, Peoples R China
[6] Hasselt Univ, Hasselt, Belgium
[7] Zhejiang Key Lab Prevent Diag & Therapy Gastrointe, Hangzhou, Zhejiang, Peoples R China
关键词
Immunotherapy; Esophageal Cancer; Neoadjuvant; Chemotherapy; PLUS CHEMOTHERAPY; OPEN-LABEL; CANCER; CHEMORADIOTHERAPY; SURGERY;
D O I
10.1136/jitc-2024-011149
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Accurate prediction of pathologic complete response (pCR) following neoadjuvant immunotherapy combined with chemotherapy (nICT) is crucial for tailoring patient care in esophageal squamous cell carcinoma (ESCC). This study aimed to develop and validate a deep learning model using a novel voxel-level radiomics approach to predict pCR based on preoperative CT images.Methods In this multicenter, retrospective study, 741 patients with ESCC who underwent nICT followed by radical esophagectomy were enrolled from three institutions. Patients from one center were divided into a training set (469 patients) and an internal validation set (118 patients) while the data from the other two centers was used as external validation sets (120 and 34 patients, respectively). The deep learning model, Vision-Mamba, integrated voxel-level radiomics feature maps and CT images for pCR prediction. Additionally, other commonly used deep learning models, including 3D-ResNet and Vision Transformer, as well as traditional radiomics methods, were developed for comparison. Model performance was evaluated using accuracy, area under the curve (AUC), sensitivity, specificity, and prognostic stratification capabilities. The SHapley Additive exPlanations analysis was employed to interpret the model's predictions.Results The Vision-Mamba model demonstrated robust predictive performance in the training set (accuracy: 0.89, AUC: 0.91, sensitivity: 0.82, specificity: 0.92) and validation sets (accuracy: 0.83-0.91, AUC: 0.83-0.92, sensitivity: 0.73-0.94, specificity: 0.84-1.0). The model outperformed other deep learning models and traditional radiomics methods. The model's ability to stratify patients into high and low-risk groups was validated, showing superior prognostic stratification compared with traditional methods. SHAP provided quantitative and visual model interpretation.Conclusions We present a voxel-level radiomics-based deep learning model to predict pCR to neoadjuvant immunotherapy combined with chemotherapy based on pretreatment diagnostic CT images with high accuracy and robustness. This model could provide a promising tool for individualized management of patients with ESCC.
引用
收藏
页数:14
相关论文
共 36 条
[1]   The status of tumor mutational burden and immunotherapy [J].
Anagnostou, Valsamo ;
Bardelli, Alberto ;
Chan, Timothy A. ;
Turajlic, Samra .
NATURE CANCER, 2022, 3 (06) :652-656
[2]  
Azulay A, 2019, J MACH LEARN RES, V20
[3]   Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].
Bray, Freddie ;
Laversanne, Mathieu ;
Sung, Hyuna ;
Ferlay, Jacques ;
Siegel, Rebecca L. ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin .
CA-A CANCER JOURNAL FOR CLINICIANS, 2024, 74 (03) :229-263
[4]   A Close Look at Deep Learning with Small Data [J].
Brigato, Lorenzo ;
Iocchi, Luca .
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, :2490-2497
[5]   Neoadjuvant sintilimab plus chemotherapy for locally advanced resectable esophageal squamous cell carcinoma: a prospective, single-arm, phase II clinical trial (CY-NICE) [J].
Chen, Yuzhen ;
Ren, Meiyu ;
Li, Bin ;
Meng, Yuqi ;
Wang, Cheng ;
Jiang, Peng ;
Song, Tieniu ;
Yang, Jianbao ;
Zhu, Duojie ;
Yu, Qiyao .
JOURNAL OF THORACIC DISEASE, 2023, 15 (12) :6761-6775
[6]   PD-L1 as a biomarker of response to immune-checkpoint inhibitors [J].
Doroshow, Deborah Blythe ;
Bhalla, Sheena ;
Beasley, Mary Beth ;
Sholl, Lynette M. ;
Kerr, Keith M. ;
Gnjatic, Sacha ;
Wistuba, Ignacio I. ;
Rimm, David L. ;
Tsao, Ming Sound ;
Hirsch, Fred R. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2021, 18 (06) :345-362
[7]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[8]   Ten-Year Outcome of Neoadjuvant Chemoradiotherapy Plus Surgery for Esophageal Cancer: The Randomized Controlled CROSS Trial [J].
Eyck, Ben M. ;
van Lanschot, J. Jan B. ;
Hulshof, Maarten C. C. M. ;
van der Wilk, Berend J. ;
Shapiro, Joel ;
van Hagen, Pieter ;
Henegouwen, Mark I. van Berge ;
Wijnhoven, Bas P. L. ;
van Laarhoven, Hanneke W. M. ;
Nieuwenhuijzen, Grard A. P. ;
Hospers, Geke A. P. ;
Bonenkamp, Johannes J. ;
Cuesta, Miguel A. ;
Blaisse, Reinoud J. B. ;
Busch, Olivier R. ;
Creemers, Geert-Jan M. ;
Punt, Cornelis J. A. ;
Plukker, John Th M. ;
Verheul, Henk M. W. ;
Bilgen, Ernst J. Spillenaar ;
van der Sangen, Maurice J. C. ;
Rozema, Tom ;
Ten Kate, Fiebo J. W. ;
Beukema, Jannet C. ;
Piet, Anna H. M. ;
van Rij, Caroline M. ;
Reinders, Janny G. ;
Tilanus, Hugo W. ;
Steyerberg, Ewout W. ;
van der Gaast, Ate .
JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (18) :1995-+
[9]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[10]  
Gu A, 2024, Arxiv, DOI arXiv:2312.00752