Optimal Control Allocation for 2D Reaction-Diffusion Equations With Multiple Locally Distributed Inputs

被引:0
作者
Cristofaro, Andrea [1 ]
机构
[1] Sapienza Univ Rome, Dept Comp Control & Management Engn, Rome, Italy
关键词
control allocation; control of PDEs; optimal control; parabolic equations; reaction-diffusion equations; BOUNDARY CONTROL;
D O I
10.1002/oca.3222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, the problem of stabilization of a 2D unstable parabolic equation with multiple distributed inputs is addressed using a spectral decomposition approach. Furthermore the underlying redundancy of the actuation arrangement is exploited and actively used by introducing a suitable control allocation architecture. In particular, two optimal allocation policies have been considered: gradient descent and linear quadratic allocation. A simulation study supports and illustrates the theoretical findings.
引用
收藏
页码:676 / 683
页数:8
相关论文
共 50 条
  • [31] Optimal control of pattern formations for an SIR reaction-diffusion epidemic model
    Chang, Lili
    Gao, Shupeng
    Wang, Zhen
    JOURNAL OF THEORETICAL BIOLOGY, 2022, 536
  • [32] Compensation of Spatially Varying Input Delay in Distributed Control of Reaction-Diffusion PDEs
    Qi, Jie
    Krstic, Miroslav
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (09) : 4069 - 4083
  • [33] Optimal design for 2D wave equations
    Cea, M.
    OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (01) : 86 - 108
  • [34] On the boundary control of coupled reaction-diffusion equations having the same diffusivity parameters
    Baccoli, Antonello
    Orlov, Yury
    Pisano, Alessandro
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 5222 - 5228
  • [35] Boundary control of reaction-diffusion equations on higher-dimensional symmetric domains
    Liu, Xinglan
    Xie, Chengkang
    AUTOMATICA, 2020, 114
  • [36] Hopf bifurcation and optimal control of a delayed reaction-diffusion brucellosis disease model
    Ma, An
    Hu, Jing
    Li, Xining
    Xu, Xinzhong
    Zhang, Qimin
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024,
  • [37] SPARSE OPTIMAL CONTROL OF PATTERN FORMATIONS FOR AN SIR REACTION-DIFFUSION EPIDEMIC MODEL
    Chang, Lili
    Gong, Wei
    Jin, Zhen
    Sun, Gui-Quan
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (05) : 1764 - 1790
  • [38] DYNAMIC ANALYSIS AND OPTIMAL CONTROL OF A TOXICANT-POPULATION MODEL WITH REACTION-DIFFUSION
    Ma, An
    Hu, Jing
    Zhang, Qimin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 579 - 605
  • [39] Optimal control of a reaction-diffusion model related to the spread of COVID-19
    Colli, Pierluigi
    Gilardi, Gianni
    Marinoschi, Gabriela
    Rocca, Elisabetta
    ANALYSIS AND APPLICATIONS, 2023, : 111 - 136
  • [40] Parametric sensitivity analysis in optimal control of a reaction-diffusion system - part II: practical methods and examples
    Griesse, R
    OPTIMIZATION METHODS & SOFTWARE, 2004, 19 (02) : 217 - 242