Optimal Control Allocation for 2D Reaction-Diffusion Equations With Multiple Locally Distributed Inputs

被引:0
|
作者
Cristofaro, Andrea [1 ]
机构
[1] Sapienza Univ Rome, Dept Comp Control & Management Engn, Rome, Italy
关键词
control allocation; control of PDEs; optimal control; parabolic equations; reaction-diffusion equations; BOUNDARY CONTROL;
D O I
10.1002/oca.3222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, the problem of stabilization of a 2D unstable parabolic equation with multiple distributed inputs is addressed using a spectral decomposition approach. Furthermore the underlying redundancy of the actuation arrangement is exploited and actively used by introducing a suitable control allocation architecture. In particular, two optimal allocation policies have been considered: gradient descent and linear quadratic allocation. A simulation study supports and illustrates the theoretical findings.
引用
收藏
页码:676 / 683
页数:8
相关论文
共 50 条
  • [1] Optimal control of a class of reaction-diffusion systems
    Casas, Eduardo
    Ryll, Christopher
    Troeltzsch, Fredi
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 70 (03) : 677 - 707
  • [2] Optimal control strategies for a new ecosystem governed by reaction-diffusion equations
    Xiang, Huili
    Liu, Bin
    Fang, Zhuang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (01) : 270 - 291
  • [3] Optimal control of fractional reaction-diffusion equations with Poisson jumps
    Durga, N.
    Muthukumar, P.
    JOURNAL OF ANALYSIS, 2019, 27 (02) : 605 - 621
  • [4] Optimal control of fractional reaction-diffusion equations with Poisson jumps
    N. Durga
    P. Muthukumar
    The Journal of Analysis, 2019, 27 : 605 - 621
  • [5] Optimal control of a system of reaction-diffusion equations modeling the wine fermentation process
    Merger, Juri
    Borzi, Alfio
    Herzog, Roland
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2017, 38 (01) : 112 - 132
  • [6] OPTIMAL CONTROL OF REACTION-DIFFUSION SYSTEMS WITH HYSTERESIS
    Muench, Christian
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (04) : 1453 - 1488
  • [7] Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology
    Chamakuri Nagaiah
    Karl Kunisch
    Gernot Plank
    Computational Optimization and Applications, 2011, 49 : 149 - 178
  • [8] Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology
    Nagaiah, Chamakuri
    Kunisch, Karl
    Plank, Gernot
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 49 (01) : 149 - 178
  • [9] Optimal boundary control of a system of reaction diffusion equations
    Barthel, Werner
    John, Christian
    Troeltzsch, Fredi
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (12): : 966 - 982
  • [10] PROPAGATING INTERFACE IN REACTION-DIFFUSION EQUATIONS WITH DISTRIBUTED DELAY
    Wang, Haoyu
    Tian, Ge
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,