Resource sharing of an infant gut microbiota synthetic community in combinations of human milk oligosaccharides

被引:3
作者
Ioannou, Athanasia [1 ]
Berkhout, Maryse D. [1 ]
Scott Jr, William T. [2 ,3 ,4 ]
Blijenberg, Bernadet [5 ]
Boeren, Sjef [6 ]
Mank, Marko [5 ]
Knol, Jan [5 ]
Belzer, Clara [1 ]
机构
[1] Wageningen Univ & Res, Lab Microbiol, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
[2] Wageningen Univ & Res, Lab Syst & Synthet Biol, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
[3] Wageningen Univ & Res, UNLOCK, Stippeneng 2, NL-6708 WE Wageningen, Netherlands
[4] Delft Univ Technol, Stippeneng 2, NL-6708 WE Wageningen, Netherlands
[5] Danone Nutr Res, Uppsalalaan 12, NL-3584 CT Utrecht, Netherlands
[6] Wageningen Univ & Res, Lab Biochem, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
关键词
infant gut microbiota; human milk oligosaccharides; synthetic community; community dynamics; bifidobacteria; genome-scale metabolic modelling; BIFIDOBACTERIUM; METABOLISM; STRATEGY;
D O I
10.1093/ismejo/wrae209
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Quickly after birth, the gut microbiota is shaped via species acquisition and resource pressure. Breastmilk, and more specifically, human milk oligosaccharides are a determining factor in the formation of microbial communities and the interactions between bacteria. Prominent human milk oligosaccharide degraders have been rigorously characterized, but it is not known how the gut microbiota is shaped as a complex community. Here, we designed BIG-Syc, a synthetic community of 13 strains from the gut of vaginally born, breastfed infants. BIG-Syc replicated key compositional, metabolic, and proteomic characteristics of the gut microbiota of infants. Upon fermentation of a four and five human milk oligosaccharide mix, BIG-Syc demonstrated different compositional and proteomic profiles, with Bifidobacterium infantis and Bifidobacterium bifidum suppressing one another. The mix of five human milk oligosaccharides resulted in a more diverse composition with dominance of B. bifidum, whereas that with four human milk oligosaccharides supported the dominance of B. infantis, in four of six replicates. Reintroduction of bifidobacteria to BIG-Syc led to their engraftment and establishment of their niche. Based on proteomics and genome-scale metabolic models, we reconstructed the carbon source utilization and metabolite and gas production per strain. BIG-Syc demonstrated teamwork as cross-feeders utilized simpler carbohydrates, organic acids, and gases released from human milk oligosaccharide degraders. Collectively, our results showed that human milk oligosaccharides prompt resource-sharing for their complete degradation while leading to a different compositional and functional profile in the community. At the same time, BIG-Syc proved to be an accurate model for the representation of intra-microbe interactions.
引用
收藏
页数:15
相关论文
共 74 条
[1]  
Andrews S., 2010, FASTQC QUALITY CONTR
[2]   KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold [J].
Aramaki, Takuya ;
Blanc-Mathieu, Romain ;
Endo, Hisashi ;
Ohkubo, Koichi ;
Kanehisa, Minoru ;
Goto, Susumu ;
Ogata, Hiroyuki .
BIOINFORMATICS, 2020, 36 (07) :2251-2252
[3]   Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics [J].
Arzamasov, Aleksandr A. ;
Osterman, Andrei L. .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2022, 57 (5-6) :562-584
[4]   Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR [J].
Arzamasov, Aleksandr A. ;
Nakajima, Aruto ;
Sakanaka, Mikiyasu ;
Ojima, Miriam N. ;
Katayama, Takane ;
Rodionov, Dmitry A. ;
Osterman, Andrei L. .
MSYSTEMS, 2022, 7 (05)
[5]  
Bäckhed F, 2015, CELL HOST MICROBE, V17, P690, DOI [10.1016/j.chom.2015.04.004, 10.1016/j.chom.2015.05.012]
[6]  
Barnett D.J., 2021, J OPEN SOURCE SOFTW, V6, P3201, DOI [10.21105/joss.03201, DOI 10.21105/JOSS.03201]
[7]   UniProt: the Universal Protein Knowledgebase in 2023 [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Ahmad, Shadab ;
Alpi, Emanuele ;
Bowler-Barnett, Emily H. ;
Britto, Ramona ;
Cukura, Austra ;
Denny, Paul ;
Dogan, Tunca ;
Ebenezer, ThankGod ;
Fan, Jun ;
Garmiri, Penelope ;
Gonzales, Leonardo Jose da Costa ;
Hatton-Ellis, Emma ;
Hussein, Abdulrahman ;
Ignatchenko, Alexandr ;
Insana, Giuseppe ;
Ishtiaq, Rizwan ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Kandasaamy, Swaathi ;
Lock, Antonia ;
Luciani, Aurelien ;
Lugaric, Marija ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Mishra, Alok ;
Moulang, Katie ;
Nightingale, Andrew ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Raposo, Pedro ;
Rice, Daniel L. ;
Saidi, Rabie ;
Santos, Rafael ;
Speretta, Elena ;
Stephenson, James ;
Totoo, Prabhat ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Warner, Kate ;
Watkins, Xavier ;
Zellner, Hermann .
NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) :D523-D531
[8]   The Extracellular Wall-Bound β-N-Acetylglucosaminidase from Lactobacillus casei Is Involved in the Metabolism of the Human Milk Oligosaccharide Lacto-N-Triose [J].
Bidart, Gonzalo N. ;
Rodriguez-Diaz, Jesus ;
Yebra, Maria J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2016, 82 (02) :570-577
[9]   Proteomics Quality Control: Quality Control Software for MaxQuant Results [J].
Bielow, Chris ;
Mastrobuoni, Guido ;
Kempa, Stefan .
JOURNAL OF PROTEOME RESEARCH, 2016, 15 (03) :777-787
[10]   Complementing 16S rRNA Gene Amplicon Sequencing with Total Bacterial Load To Infer Absolute Species Concentrations in the Vaginal Microbiome [J].
Boshier, Florencia A. Tettamanti ;
Srinivasan, Sujatha ;
Lopez, Anthony ;
Hoffman, Noah G. ;
Proll, Sean ;
Fredricks, David N. ;
Schiffer, Joshua T. .
MSYSTEMS, 2020, 5 (02)