Quadratic programming with one quadratic constraint in Hilbert spaces

被引:0
作者
Santiago Gonzalez Zerbo [1 ]
Alejandra Maestripieri [1 ]
Francisco Martínez Pería [1 ]
机构
[1] Instituto Argentino de Matemática “Alberto P. Calderón”, CONICET, Saavedra 15, Piso 3, Buenos Aires
[2] Centro de Matemática de La Plata, Facultad de Cs. Exactas – UNLP, Calle 47 esq. 115, La Plata
关键词
Hilbert spaces; Operator pencils; Quadratically constrained quadratic programming;
D O I
10.1007/s43034-025-00422-8
中图分类号
学科分类号
摘要
A quadratically constrained quadratic programming problem is considered in a Hilbert space setting, where neither the objective nor the constraint are convex functions. Necessary and sufficient conditions are provided to guarantee that the problem admits solutions for every initial data (in an adequate set). © Tusi Mathematical Research Group (TMRG) 2025.
引用
收藏
相关论文
共 48 条
  • [1] Ahmetoglu F., Calculation method for quadratic programming problem in Hilbert spaces, partially ordered by cone with empty interior, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat, 62, pp. 11-15, (2013)
  • [2] Azizov T.Y., Iokhvidov I.S., Linear Operators in Spaces with an Indefinite Metric, (1989)
  • [3] Bednarczuk E.M., Bruccola G., On global solvability of a class of possibly nonconvex QCQP problems in Hilbert spaces, Optimization, 73, pp. 3537-3556, (2023)
  • [4] Benson P., Smith R.L., Schochetman I.E., Bean J.C., Optimal solution approximation for infinite positive-definite quadratic programming, J. Optim. Theory Appl, 85, pp. 235-248, (1995)
  • [5] Boltyanski V., Martini H., Soltan V., Geometric Methods and Optimization Problems, (1999)
  • [6] Boyd S., Vandenberghe L., Convex Optimization, (2004)
  • [7] Canu S., Ong C.S., Mary X., Splines with non positive kernels. Proc. 5th Int. ISAAC Cong, pp. 1-10, (2005)
  • [8] Canu S., Ong C.S., Mary X., Smola A., Learning with non-positive kernels, Proc. 21st Int. Conf. Mach. Learn, pp. 639-646, (2004)
  • [9] Chen S., Soon-Yi Wu W., Algorithms for infinite quadratic programming in Lp spaces, J. Comput. Appl. Math, 213, pp. 408-422, (2008)
  • [10] De Maio A., Huang Y., Palomar D.P., Zhang S., Farina A., Fractional QCQP with applications in ML steering direction estimation for radar detection, IEEE Trans. Signal Process, 59, pp. 172-185, (2011)