Mitigating thermal runaway propagation for lithium-ion batteries by a novel integrated liquid cooling/aerogel strategies

被引:1
作者
Lyu, Peizhao
Chen, Guohe
Liu, Xinjian
Li, Menghan [1 ]
Rao, Zhonghao [1 ]
机构
[1] Hebei Univ Technol, Hebei Engn Res Ctr Adv Energy Storage Technol & Eq, Sch Energy & Environm Engn, Tianjin 300401, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal runaway propagation; Liquid cooling/aerogel; Battery thermal management; Lithium-ion batteries; SAFETY; BEHAVIOR; MODEL; PACK;
D O I
10.1016/j.applthermaleng.2025.126001
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal runaway (TR) is the primary issue that causes the fire accident of electrical vehicles (EVs) and energy storage system (EES). Mitigating TR and TR propagation is important to keep the battery safety in EVs and EES. In this paper, a novel integrated liquid channel/aerogel structure was applied to mitigate TR propagation of batteries. The influence of different aspects was investigated to demonstrate the effectiveness of the proposed strategies. The results exhibit that the increasing thickness of aerogel leads to the decreasing heat transfer ratio on the surface of battery from 66 % to 44 % because of the decreasing heat flux through the surface of batteries. Besides, with the increasing mass flow rate, the heat transfer ratio from battery surface decrease from 74 % to 42 %, due to the increasing heat dissipation effect caused by increasing mass flow rate. Finally, the integrated liquid channel/aerogel structure can mitigate TR propagation with a lower mass flow rate (4 x 10-6 kg center dot s- 1), compared to the traditional single liquid cooling plate (2.8 x 10- 5 kg center dot s- 1), showing a better effect of integrated liquid channel/aerogel structure on mitigating TR and TR propagation. This study is of great significance for promoting the optimization and safety design of lithium-ion battery modules and improving the safety performance of EVs and EES.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Thermal runaway and flame propagation of lithium-ion battery in confined spaces: Experiments and simulations
    Xu, Yingying
    Lu, Jiajun
    Zhang, Pengwei
    Gao, Kejie
    Huang, Yuqi
    JOURNAL OF ENERGY STORAGE, 2025, 117
  • [32] Protective technical textile to prevent thermal runaway propagation in lithium-ion batteries
    Hacker, Christoph
    Sieb, David
    Linz, Marius
    Linz, Alexander
    Knein-Linz, Robert
    Technische Textilien, 2022, 65 (05):
  • [33] Mitigating thermal runaway propagation in high specific energy lithium-ion battery modules through nanofiber aerogel composite material
    Wong, Shaw Kang
    Li, Kuijie
    Rui, Xinyu
    Fan, Liyun
    Ouyang, Minggao
    Feng, Xuning
    ENERGY, 2024, 307
  • [34] Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling
    Zhang, Wencan
    Liang, Zhicheng
    Yin, Xiuxing
    Ling, Guozhi
    APPLIED THERMAL ENGINEERING, 2021, 184
  • [35] Numerical study of mini-channel liquid cooling for suppressing thermal runaway propagation in a lithium-ion battery pack
    Fu, Hui
    Wang, Junling
    Li, Lun
    Gong, Junhui
    Wang, Xuan
    APPLIED THERMAL ENGINEERING, 2023, 234
  • [36] Advances and challenges in thermal runaway modeling of lithium-ion batteries
    Wang, Gongquan
    Ping, Ping
    Kong, Depeng
    Peng, Rongqi
    He, Xu
    Zhang, Yue
    Dai, Xinyi
    Wen, Jennifer
    INNOVATION, 2024, 5 (04):
  • [37] Monitoring and diagnostic approaches for thermal runaway in lithium-ion batteries
    Xu, Zengheng
    Zhou, Xiaoyan
    Fu, Jialong
    Li, Qiutong
    Tan, Zejie
    Fan, Xiaopeng
    Wang, Zhiming
    Tian, Bing
    Guo, Xin
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (33): : 4501 - 4516
  • [38] Modeling thermal runaway of lithium-ion batteries with a venting process
    He, C. X.
    Yue, Q. L.
    Chen, Q.
    Zhao, T. S.
    APPLIED ENERGY, 2022, 327
  • [39] An experimental analysis on thermal runaway and its propagation in Cell-to-Pack lithium-ion batteries
    Wang, Huaibin
    Xu, Hui
    Zhao, Zhenyang
    Wang, Qinzheng
    Jin, Changyong
    Li, Yanliang
    Sheng, Jun
    Li, Kuijie
    Du, Zhiming
    Xu, Chengshan
    Feng, Xuning
    APPLIED THERMAL ENGINEERING, 2022, 211
  • [40] Review of polymers in the prevention of thermal runaway in lithium-ion batteries
    Allen, Jonathan
    ENERGY REPORTS, 2020, 6 : 217 - 224