Electrocatalytic Water Splitting in Isoindigo-Based Covalent Organic Frameworks

被引:4
作者
Das, Gobinda [1 ]
Roy, Suprobhat Singha [2 ,3 ]
Abou Ibrahim, Fayrouz [1 ]
Merhi, Areej [4 ]
Dirawi, Huda N. [4 ]
Benyettou, Farah [1 ]
Das, Akshaya Kumar [1 ]
Prakasam, Thirumurugan [1 ]
Varghese, Sabu [5 ]
Sharma, Sudhir Kumar [6 ]
Kirmizialtin, Serdal [1 ]
Jagannathan, Ramesh [6 ]
Gandara, Felipe [7 ]
Aouad, Samer [1 ,8 ]
Olson, Mark A. [9 ]
Kundu, Subrata [2 ,3 ]
Kaafarani, Bilal R. [4 ]
Trabolsi, Ali [1 ,10 ]
机构
[1] New York Univ Abu Dhabi, Sci Div, POB 129188, Abu Dhabi, U Arab Emirates
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[3] CSIR Cent Electrochem Res Inst CECRI, Sekkalakottai, India
[4] Amer Univ Beirut, Dept Chem, Beirut 2020, Lebanon
[5] NYU Abu Dhabi, CTP, Abu Dhabi 129188, U Arab Emirates
[6] NYU Abu Dhabi NYUAD, Engn Div, Abu Dhabi, U Arab Emirates
[7] Inst Ciencia Mat Madrid CSIC, C Sor Juana Ines De La Cruz 3, Madrid 28049, Spain
[8] Univ Balamand, Fac Arts & Sci, Dept Chem, POB 100, Tripoli, Lebanon
[9] Texas A&M Univ Corpus Christi, Dept Phys & Environm Sci, 6300 Ocean Dr, Corpus Christi, TX 78412 USA
[10] NYU Abu Dhabi NYUAD, Water Res Ctr, POB 129188, Abu Dhabi, U Arab Emirates
关键词
Covalent organic frameworks; Water splitting; Isoindigo; Electrocatalysis; HYDROGEN; CHALLENGES; STABILITY; POLYMERS;
D O I
10.1002/anie.202419836
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing a low-cost, robust, and high-performance electrocatalyst capable of efficiently performing both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) under both basic and acidic conditions is a major challenge. This area of research has attracted much attention in recent decades due to its importance in energy storage and conversion. Herein, we report the synthesis of two imine-linked isoindigo-based covalent organic networks I-TTA and I-TG (I=Isoindigo, TTA=4,4 ',4 ''-(1,3,5-triazine-2,4,6-triyl)-trianiline, TG=triamino-guanidinium hydrochloride salt). By introducing two amine core units with different planarity, such as triazine and ionic guanidinium units, we control the morphology, crystallinity, and corresponding electrocatalytic properties of the materials. The combination of isoindigo dialdehyde with a planar triazine core, leads to the formation of thin, highly crystalline, planar two dimensional (2D) nanosheets covalent organic framework (COF), I-TTA whereas its combination with ionic non-planar guanidinium core leads to an amorphous covalent organic polymer (COP), I-TG with a fibrous morphology. The sheet-like crystalline I-TTA COF shows better electrocatalytic activity compared to the amorphous fibrous I-TG COP. I-TTA exhibits a current density of 10 mA cm-2 at an overpotential of similar to 134 mV for HER (in 0.5 M H2SO4) and similar to 283 mV for OER (in 1 M KOH). The electrocatalytic activity of the I-TTA COF in the OER exceeds that of other metal-free COFs. The catalytic activity is maintained even after 24 hours of chronoamperometry and 500 cycles of cyclic voltammetry (CV) at high scan rates.
引用
收藏
页数:11
相关论文
共 69 条
[1]   Cobalt-Modified Covalent Organic Framework as a Robust Water Oxidation Electrocatalyst [J].
Aiyappa, Harshitha Barike ;
Thote, Jayshri ;
Shinde, Digambar Balaji ;
Banerjee, Rahul ;
Kurungot, Sreekumar .
CHEMISTRY OF MATERIALS, 2016, 28 (12) :4375-4379
[2]   Viologen-Cucurbit[7]uril Based Polyrotaxanated Covalent Organic Networks: A Metal Free Electrocatalyst for Oxygen Evolution Reaction [J].
Ambrose, Bebin ;
Madhu, Ragunath ;
Ramamurthy, Kalaivanan ;
Kathiresan, Murugavel ;
Kundu, Subrata .
SMALL, 2024, 20 (36)
[3]   The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research [J].
Anantharaj, Sengeni ;
Karthik, Pitchiah Esakki ;
Noda, Suguru .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (43) :23051-23067
[4]   Global warming policy: Is population left out in the cold? [J].
Bongaarts, John ;
O'Neill, Brian C. .
SCIENCE, 2018, 361 (6403) :650-652
[5]   Unveiling the Potential of Covalent Organic Framework Electrocatalyst for Enhanced Oxygen Evolution [J].
Bora, Hridoy Jyoti ;
Nath, Manash P. ;
Medhi, Palash Jyoti ;
Boruah, Palash Jyoti ;
Kalita, Parismita ;
Bailung, Heremba ;
Choudhury, Biswajit ;
Sen Sarma, Neelotpal ;
Kalita, Anamika .
LANGMUIR, 2024, 40 (18) :9751-9760
[6]   Optical tweezers in single-molecule biophysics [J].
Bustamante, Carlos J. ;
Chemla, Yann R. ;
Liu, Shixin ;
Wang, Michelle D. .
NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01)
[7]   Molecule-Enhanced Electrocatalysis of Sustainable Oxygen Evolution Using Organoselenium Functionalized Metal-Organic Nanosheets [J].
Cao, Li-Ming ;
Hu, Chang-Guo ;
Li, Hai-Hong ;
Huang, Hui-Bin ;
Ding, Li-Wen ;
Zhang, Jia ;
Wu, Jun-Xi ;
Du, Zi-Yi ;
He, Chun-Ting ;
Chen, Xiao-Ming .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (02) :1144-1154
[8]   Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments [J].
Chatenet, Marian ;
Pollet, Bruno G. ;
Dekel, Dario R. ;
Dionigi, Fabio ;
Deseure, Jonathan ;
Millet, Pierre ;
Braatz, Richard D. ;
Bazant, Martin Z. ;
Eikerling, Michael ;
Staffell, Iain ;
Balcombe, Paul ;
Shao-Horn, Yang ;
Schaefer, Helmut .
CHEMICAL SOCIETY REVIEWS, 2022, 51 (11) :4583-4762
[9]   Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design [J].
Chen, Feng-Yang ;
Wu, Zhen-Yu ;
Adler, Zachary ;
Wang, Haotian .
JOULE, 2021, 5 (07) :1704-1731
[10]   Use of Platinum as the Counter Electrode to Study the Activity of Nonprecious Metal Catalysts for the Hydrogen Evolution Reaction [J].
Chen, Rong ;
Yang, Cangjie ;
Cai, Weizheng ;
Wang, Hsin-Yi ;
Miao, Jianwei ;
Zhang, Liping ;
Chen, Shengli ;
Liu, Bin .
ACS ENERGY LETTERS, 2017, 2 (05) :1070-1075