ANALYSIS OF A MAY-HOLLING-TANNER RATIO-DEPENDENT PREDATOR-PREY MODEL WITH AN ALTERNATIVE FOOD SOURCE FOR THE PREDATOR AND A STRONG ALLEE EFFECT FOR THE PREY

被引:0
作者
Romero-Ordonez, Marco antonio [1 ,3 ]
Perez-Nunez, Jhelly-reynaluz [1 ,3 ]
Pino-romero, Neisser [2 ,4 ]
机构
[1] Univ Nacl Mayor San Marcos, Fac Ciencias Matemat, Dept Matemat, Lima, Peru
[2] Univ Peruana Cayetano Heredia, Fac Ciencias & Ingn, Dept Acad Ciencias Exactas, Lima 15102, Peru
[3] Ave Univ Cruce Ave Venezuela Cuadra 34, Lima, Peru
[4] Ave Honorio Delgado 430, Lima 15102, Peru
来源
MATHEMATICS IN APPLIED SCIENCES AND ENGINEERING | 2024年 / 5卷 / 04期
关键词
Strong Allee effect; alternative food; differential equations; Liapunov function; Chetaev criterion; MODIFIED LESLIE-GOWER; FUNCTIONAL-RESPONSE; DYNAMICS; STABILITY;
D O I
10.5206/mase/19417
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a detailed analysis of a bitrophic chain to understand the complex ecological behavior applied to this specific model. The model is described by means of a two-dimensional system of ordinary differential equations. The existence and uniqueness of the solutions of this system are examined, as well as their boundedness and positivity. In addition, through a differentiable equivalence, conditions for local and global stability at biologically relevant critical points are established. Periodic solutions are also explored. Finally, the Python programming language is used to perform a quantitative analysis of these critical points, showing different scenarios of the qualitative analysis previously obtained.
引用
收藏
页码:305 / 328
页数:24
相关论文
共 54 条
[41]  
Perez-Nanez J., 2017, SELECCIONES MATEMATI, V4, P112
[42]  
Romero Neisser Pino, 2022, Rev. Mat, V29, P69, DOI 10.15517/rmta.v29i1.43747
[43]  
Romero-Ordonez M., 2022, Sel. Mat., V9, P196
[44]  
Ruiz-Tintinago P. C., 2019, SEL MATEMATICAS, V6, P204, DOI DOI 10.17268/SEL.MAT.2019.02.07
[45]   Dynamics of a predator-prey model [J].
Sáez, ES ;
González-Olivares, E .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (05) :1867-1878
[46]   Dynamical analysis of a delayed ratio-dependent Holling-Tanner predator-prey model [J].
Saha, Tapan ;
Chakrabarti, Charugopal .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 358 (02) :389-402
[47]   Bifurcation analysis of a Leslie-type predator-prey system with simplified Rolling type IV functional response and strong Allee effect on prey [J].
Shang, Zuchong ;
Qiao, Yuanhua .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 64
[48]  
Sotomayor J., 1979, LICBES EQUACBES DIFE
[49]   What is the Allee effect? [J].
Stephens, PA ;
Sutherland, WJ ;
Freckleton, RP .
OIKOS, 1999, 87 (01) :185-190
[50]   STABILITY AND INTRINSIC GROWTH-RATES OF PREY AND PREDATOR POPULATIONS [J].
TANNER, JT .
ECOLOGY, 1975, 56 (04) :855-867