HIGH-FREQUENCY HOMOGENIZATION FOR PERIODIC DISPERSIVE MEDIA

被引:2
|
作者
Touboul, Marie [1 ]
Vial, Benjamin [2 ]
Assier, Raphael [3 ]
Guenneau, Sbastien [4 ]
V. Craster, Richard [5 ]
机构
[1] Imperial Coll London, Dept Math, UMI 2004 Abraham Moivre CNRS, London SW7 2AZ, England
[2] Imperial Coll London, Dept Math, London SW7 2AZ, England
[3] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
[4] Imperial Coll London, Dept Phys, Blackett Lab, UMI 2004 Abraham Moivre CNRS, London SW7 2AZ, England
[5] Imperial Coll London, Dept Math, Dept Mech Engn, UMI 2004 Abraham Moivre CNRS, London SW7 2AZ, England
来源
MULTISCALE MODELING & SIMULATION | 2024年 / 22卷 / 03期
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会; 英国科研创新办公室;
关键词
dispersive media; absorption; Lorentz and Drude models; high-frequency homogenization; periodic media; asymptotic methods; BAND-GAP; CRYSTALS;
D O I
10.1137/23M159648X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
High-frequency homogenization is used to study dispersive media, containing inclusions placed periodically, for which the properties of the material depend on the frequency (Lorentz or Drude model with damping, for example). Effective properties are obtained near a given point of the dispersion diagram in frequency-wavenumber space. The asymptotic approximations of the dispersion diagrams and the wavefields so obtained are then cross-validated via detailed comparison with finite element method simulations in both one and two dimensions.
引用
收藏
页码:1136 / 1168
页数:33
相关论文
共 50 条
  • [1] High-frequency homogenization for periodic media
    Craster, R. V.
    Kaplunov, J.
    Pichugin, A. V.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2120): : 2341 - 2362
  • [2] High-frequency homogenization for travelling waves in periodic media
    Harutyunyan, Davit
    Milton, Graeme W.
    Craster, Richard V.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2191):
  • [3] HIGH-FREQUENCY HOMOGENIZATION FOR ELECTROMAGNETIC HEATING OF PERIODIC MEDIA
    Gaone, Joseph M.
    Tilley, Burt S.
    Yakovlev, Vadim V.
    MULTISCALE MODELING & SIMULATION, 2021, 19 (03): : 1285 - 1309
  • [4] High-frequency homogenization in periodic media with imperfect interfaces
    Assier, Raphael C.
    Touboul, Marie
    Lombard, Bruno
    Bellis, Cedric
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2244):
  • [5] High-frequency homogenization of nonstationary periodic equations
    Dorodnyi, M. A.
    APPLICABLE ANALYSIS, 2024, 103 (03) : 533 - 561
  • [6] APPROXIMATION OF HIGH-FREQUENCY WAVE PROPAGATION IN DISPERSIVE MEDIA
    Baumstark, Julian
    Jahnke, Tobias
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (02) : 1214 - 1245
  • [7] A convergent low-wavenumber, high-frequency homogenization of the wave equation in periodic media with a source term
    Meng, Shixu
    Oudghiri-Idrissi, Othman
    Guzina, Bojan B.
    APPLICABLE ANALYSIS, 2022, 101 (18) : 6451 - 6484
  • [8] INTERACTION OF HIGH-FREQUENCY AND LOW-FREQUENCY WAVES IN NONLINEAR DISPERSIVE MEDIA
    BAKAI, AS
    SOVIET PHYSICS JETP-USSR, 1969, 28 (01): : 140 - &
  • [9] High-Frequency Dynamic Overshoot in Linear and Nonlinear Periodic Media
    Zhang, Yijing
    Vakakis, Alexander F.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2017, 12 (01):
  • [10] FOCUSING OF HIGH-FREQUENCY DISPERSIVE PHONONS
    TAMURA, S
    PHYSICAL REVIEW B, 1982, 25 (02): : 1415 - 1418