Engineering Lattice Oxygen Regeneration of NiFe Layered Double Hydroxide Enhances Oxygen Evolution Catalysis Durability

被引:68
作者
Wu, Fengyu [1 ]
Tian, Fenyang [1 ]
Li, Menggang [1 ]
Geng, Shuo [2 ]
Qiu, Longyu [1 ]
He, Lin [1 ]
Li, Lulu [1 ]
Chen, Zhaoyu [3 ]
Yu, Yongsheng [1 ]
Yang, Weiwei [1 ]
Hou, Yanglong [4 ,5 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, State Key Lab Urban Water Resource & Environm, Harbin 150001, Peoples R China
[2] Guizhou Univ, Sch Chem & Chem Engn, Guizhou Prov Key Lab Green Chem & Clean Energy Tec, Guiyang 550025, Guizhou, Peoples R China
[3] Harbin Inst Technol, Res Ctr Basic Space Sci, Lab Space Environm & Phys Sci, Harbin 150001, Peoples R China
[4] Sun Yat Sen Univ, Sch Mat, Shenzhen Campus, Shenzhen 518107, Peoples R China
[5] Peking Univ, Sch Mat Sci & Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
durability; lattice oxygen mechanism; lattice oxygen regeneration; NiFe layered double hydroxides; oxygen evolution reaction; WATER; ELECTROCATALYSTS; MEMBRANE;
D O I
10.1002/anie.202413250
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The lattice oxygen mechanism (LOM) endows NiFe layered double hydroxide (NiFe-LDH) with superior oxygen evolution reaction (OER) activity, yet the frequent evolution and sluggish regeneration of lattice oxygen intensify the dissolution of active species. Herein, we overcome this challenge by constructing the NiFe hydroxide/Ni4Mo alloy (NiFe-LDH/Ni4Mo) heterojunction electrocatalyst, featuring the Ni4Mo alloy as the oxygen pump to provide oxygenous intermediates and electrons for NiFe-LDH. The released lattice oxygen can be timely offset by the oxygenous species during the LOM process, balancing the regeneration of lattice oxygen and assuring the enhancement of the durability. In consequence, the durability of NiFe-LDH is significantly enhanced after the modification of Ni4Mo with an impressive durability for over 60 h, much longer than that of NiFe-LDH counterpart with only 10 h. In situ spectra and first-principle simulations reveal that the adsorption of OH- is significantly strengthened owing to the introduction of Ni4Mo, ensuring the rapid regeneration of lattice oxygen. Moreover, NiFe-LDH/Ni4Mo-based anion exchange membrane water electrolyzer (AEMWE) presents an impressive durability for over 150 h at 100 mA cm-2. The oxygen pump strategy opens opportunities to balance the evolution and regeneration of lattice oxygen, enhancing the durability of efficient OER catalysts.
引用
收藏
页数:9
相关论文
共 54 条
[1]   One-Step Controllable Synthesis of Catalytic Ni4Mo/MoOx/Cu Nanointerfaces for Highly Efficient Water Reduction [J].
An, Yiming ;
Long, Xia ;
Ma, Ming ;
Hu, Jue ;
Lin, He ;
Zhou, Dan ;
Xing, Zheng ;
Huang, Bolong ;
Yang, Shihe .
ADVANCED ENERGY MATERIALS, 2019, 9 (41)
[2]   Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction** [J].
Bai, Lichen ;
Lee, Seunghwa ;
Hu, Xile .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (06) :3095-3103
[3]   Self-standing polyaniline membrane containing quaternary ammonium groups loaded with hollow spherical NiCo2O4electrocatalyst for alkaline water electrolyser [J].
Bhushan, Mani ;
Mani, Mariappan ;
Singh, Anuj K. ;
Panda, Asit B. ;
Shahi, Vinod K. .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (33) :17089-17097
[4]   Reinforced Layered Double Hydroxide Oxygen-Evolution Electrocatalysts: A Polyoxometallic Acid Wet-Etching Approach and Synergistic Mechanism [J].
Cai, Zhengyang ;
Wang, Ping ;
Zhang, Jiajia ;
Chen, Aiying ;
Zhang, Jiangwei ;
Yan, Ya ;
Wang, Xianying .
ADVANCED MATERIALS, 2022, 34 (26)
[5]   Effect of the interfacial electronic coupling of nickel-iron sulfide nanosheets with layer Ti3C2 MXenes as efficient bifunctional electrocatalysts for anion-exchange membrane water electrolysis [J].
Chanda, Debabrata ;
Kannan, Karthik ;
Gautam, Jagadis ;
Meshesha, Mikiyas Mekete ;
Jang, Seok Gwon ;
Dinh, Van An ;
Yang, Bee Lyong .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 321
[6]   Core-shell structured Ni12P5/Ni3(PO4)2 hollow spheres as difunctional and efficient electrocatalysts for overall water electrolysis [J].
Chang, Jinfa ;
Lv, Qing ;
Li, Guoqiang ;
Ge, Junjie ;
Liu, Changpeng ;
Xing, Wei .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 204 :486-496
[7]   Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO2 Hydrogenation to Hydrocarbons [J].
Chen, Guangbo ;
Gao, Rui ;
Zhao, Yufei ;
Li, Zhenhua ;
Waterhouse, Geoffrey I. N. ;
Shi, Run ;
Zhao, Jiaqing ;
Zhang, Mengtao ;
Shang, Lu ;
Sheng, Guiyang ;
Zhang, Xiangping ;
Wen, Xiaodong ;
Wu, Li-Zhu ;
Tung, Chen-Ho ;
Zhang, Tierui .
ADVANCED MATERIALS, 2018, 30 (03)
[8]   Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction [J].
Chen, Rong ;
Hung, Sung-Fu ;
Zhou, Daojin ;
Gao, Jiajian ;
Yang, Cangjie ;
Tao, Huabing ;
Yang, Hong Bin ;
Zhang, Liping ;
Zhang, Lulu ;
Xiong, Qihua ;
Chen, Hao Ming ;
Liu, Bin .
ADVANCED MATERIALS, 2019, 31 (41)
[9]   Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction [J].
Chung, Dong Young ;
Lopes, Pietro P. ;
Martins, Pedro Farinazzo Bergamo Dias ;
He, Haiying ;
Kawaguchi, Tomoya ;
Zapol, Peter ;
You, Hoydoo ;
Tripkovic, Dusan ;
Strmcnik, Dusan ;
Zhu, Yisi ;
Seifert, Soenke ;
Lee, Sungsik ;
Stamenkovic, Vojislav R. ;
Markovic, Nenad M. .
NATURE ENERGY, 2020, 5 (03) :222-230
[10]   In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution [J].
Dionigi, Fabio ;
Zeng, Zhenhua ;
Sinev, Ilya ;
Merzdorf, Thomas ;
Deshpande, Siddharth ;
Lopez, Miguel Bernal ;
Kunze, Sebastian ;
Zegkinoglou, Ioannis ;
Sarodnik, Hannes ;
Fan, Dingxin ;
Bergmann, Arno ;
Drnec, Jakub ;
de Araujo, Jorge Ferreira ;
Gliech, Manuel ;
Teschner, Detre ;
Zhu, Jing ;
Li, Wei-Xue ;
Greeley, Jeffrey ;
Roldan Cuenya, Beatriz ;
Strasser, Peter .
NATURE COMMUNICATIONS, 2020, 11 (01)