共 71 条
[51]
TREND: TempoRal Event and Node Dynamics for Graph Representation Learning
[J].
PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22),
2022,
:1159-1169
[52]
Wu K.C., 2019, J. S. China Univ. Technol., V21, P33, DOI [10.19366/j.cnki.1009-055X.2019.02.004, DOI 10.19366/J.CNKI.1009-055X.2019.02.004]
[53]
Graph Neural Networks for Natural Language Processing: A Survey
[J].
FOUNDATIONS AND TRENDS IN MACHINE LEARNING,
2023, 16 (02)
:119-329
[54]
Wu Y.M., 2022, Voice Screen World, P8
[55]
Xia L., 2020, Inf. Stud.: Theory Appl., V43, P157, DOI [10.16353/j.cnki.1000-7490.2020.10.026, DOI 10.16353/J.CNKI.1000-7490.2020.10.026]
[56]
Xie K., 2010, Wuhan Univer Technol. (Social Science Edition), V23, P482, DOI [10.3963/j.issn.1671-6477.2010.04.006, DOI 10.3963/J.ISSN.1671-6477.2010.04.006]
[58]
Xu H.L., 2022, Inf. Sci., V40, P48, DOI [10.13833/j.issn.1007-7634.2022.07.006, DOI 10.13833/J.ISSN.1007-7634.2022.07.006]
[59]
[徐宗学 Xu Zongxue], 2019, [水利学报, Journal of Hydraulic Engineering], V50, P53
[60]
Yan X.X., 2023, J. Catastrophol., P1