Error Analysis of an Alternating Direction Implicit Difference Method for 2D Subdiffusion Equation with Initial Singularity

被引:0
作者
Liu, Weizhi [1 ]
Chen, Hu [1 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2025年 / 29卷 / 02期
基金
中国国家自然科学基金;
关键词
L1; scheme; ADI scheme; pointwise-in-time error estimate; L-2-norm and H-1-norm; GRADED MESHES; ADI SCHEME;
D O I
10.11650/tjm/241101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The alternating direction implicit (ADI) scheme is used to numerically solve the 2D subdiffusion equation with initial singularity. The time derivative is defined by the commonly used Caputo fractional derivative, and discretised by the L1 scheme on nonuniform mesh. The finite difference method (FDM) is applied to spatial discretization. The local error analyses of fully discrete scheme under the L-2- norm and H-1-norm are strictly established. By selecting the milder grading parameter r > 2 - alpha, the time convergence rate can reach O( M-- min { 2 -alpha,M-2 alpha } ) in positive time. In order to verify the correctness of the theoretical analysis, some numerical results are presented.
引用
收藏
页码:245 / 259
页数:15
相关论文
共 50 条
  • [41] An implicit MLS meshless method for 2-D time dependent fractional diffusion-wave equation
    Yang, J. Y.
    Zhao, Y. M.
    Liu, N.
    Bu, W. P.
    Xu, T. L.
    Tang, Y. F.
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (3-4) : 1229 - 1240
  • [42] Unconditional error analysis of weighted implicit-explicit virtual element method for nonlinear neutral delay-reaction-diffusion equation
    Peng, Shanshan
    Chen, Yanping
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [43] Error analysis of a fully discrete PFEM for the 2D/3D unsteady incompressible MHD equations
    Shi, Kaiwen
    Su, Haiyan
    Feng, Xinlong
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 479
  • [44] Error Analysis of a Finite Difference Method on Graded Meshes for a Multiterm Time-Fractional Initial-Boundary Value Problem
    Huang, Chaobao
    Liu, Xiaohui
    Meng, Xiangyun
    Stynes, Martin
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (04) : 815 - 825
  • [45] Optimal error estimate of the penalty method for the 2D/3D time-dependent MHD equations
    Shi, Kaiwen
    Feng, Xinlong
    Su, Haiyan
    NUMERICAL ALGORITHMS, 2023, 93 (03) : 1337 - 1371
  • [46] An implicit potential method along with a meshless technique for incompressible fluid flows for regular and irregular geometries in 2D and 3D
    Bourantas, G. C.
    Loukopoulos, V. C.
    Chowdhury, H. A.
    Joldes, G. R.
    Miller, K.
    Bordas, S. P. A.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2017, 77 : 97 - 111
  • [47] A parameter uniform numerical method for 2D singularly perturbed elliptic differential-difference equations
    Garima, Komal
    Bansal, Komal
    Sharma, Kapil K.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (06) : 6347 - 6372
  • [49] On skewed grid point iterative method for solving 2D hyperbolic telegraph fractional differential equation
    Ali, Ajmal
    Ali, Norhashidah Hj. Mohd.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [50] Analysis of multilevel finite volume approximation of 2D convective Cahn-Hilliard equation
    Appadu, A. R.
    Djoko, J. K.
    Gidey, H. H.
    Lubuma, J. M. S.
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2017, 34 (01) : 253 - 304