A remark on the relative Lie algebroid connections and their moduli spaces

被引:1
作者
Manikandan, S. [1 ]
Singh, Anoop [2 ]
机构
[1] Indian Inst Technol Madras, Chennai 600036, Tamil Nadu, India
[2] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, India
关键词
Relative Lie algebroid connections; Chern classes; Higgs bundles; moduli spaces; FUNDAMENTAL GROUP; REPRESENTATIONS;
D O I
10.1142/S0219498826500349
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the relative lie algebroid connections on a holomorphic vector bundle over a family of compact complex manifolds (or smooth projective varieties over & Copf;). We provide a sufficient condition for the existence of a relative Lie algebroid connection on a holomorphic vector bundle over a complex analytic family of compact complex manifolds. We show that the relative Lie algebroid Chern classes of a holomorphic vector bundle admitting relative Lie algebroid connection vanish, if each of the fibers of the complex analytic family is compact and K & auml;hler. Moreover, we consider the moduli space of relative Lie algebroid connections and we show that there exists a natural relative compactification of this moduli space.
引用
收藏
页数:18
相关论文
共 13 条
[1]   Lie algebroid connections, twisted Higgs bundles and motives of moduli spaces [J].
Alfaya, David ;
Oliveira, Andre .
JOURNAL OF GEOMETRY AND PHYSICS, 2024, 201
[2]  
Atiyah M.F., 1957, T AM MATH SOC, V85, P181, DOI [10.1090/S0002-9947-1957-0086359-5, 10.2307/1992969, DOI 10.2307/1992969]
[3]   On the relative connections [J].
Biswas, Indranil ;
Singh, Anoop .
COMMUNICATIONS IN ALGEBRA, 2020, 48 (04) :1452-1475
[4]  
Bottacin Francesco, 2015, CURRENT TRENDS ANAL, p375 393
[5]  
Deligne P., 1970, LECT NOTES MATH, V163
[6]  
GODEMENT R, 1964, THEORIE FAISCEAUX
[7]  
Kobayashi Shoshichi., 1987, DIFFERENTIAL GEOMETR, V15
[8]   On the relative logarithmic connections and relative residue formula [J].
Misra, Snehajit ;
Singh, Anoop .
COMMUNICATIONS IN ALGEBRA, 2023, 51 (03) :1217-1228
[9]  
Simpson C., 1997, Algebraic geometry-Santa Cruz 1995, P217
[10]  
Simpson CT, 1994, PUBL MATH, P5