Analysis of α-fractal functions without boundary point conditions on the Sierpinski gasket

被引:1
作者
Gurubachan [1 ]
Chandramouli, V. V. M. S. [1 ]
Verma, S. [2 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Math, Jodhpur 342037, India
[2] Indian Inst Informat Technol Allahabad, Dept Appl Sci, Prayagraj 211015, India
关键词
Sierpinski gasket; alpha-fractal interpolation function; Hausdorff dimension; Box dimension; Energy space; H & ouml; lder space; Oscillation space; INTERPOLATION; LAPLACIAN;
D O I
10.1016/j.amc.2024.129072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note aims to manifest the existence of a class of alpha-fractal interpolation functions (alpha-FIFs) without boundary point conditions at the m-th level in the space consisting of continuous functions on the Sierpi & nacute;ski gasket (SG). Furthermore, we add the existence of the same class in the L-p space and energy space on SG. Under certain hypotheses, we show the existence of alpha-FIFs without boundary point conditions in the H & ouml;lder space and oscillation space on SG, and also calculate the fractal dimensions of their graphs.
引用
收藏
页数:18
相关论文
共 28 条
[1]  
Agrawal V, 2022, RESULTS MATH, V77, DOI 10.1007/s00025-021-01565-5
[2]  
Agrawal V, 2021, EUR PHYS J-SPEC TOP, V230, P3781, DOI 10.1140/epjs/s11734-021-00304-9
[3]   FRACTAL FUNCTIONS AND INTERPOLATION [J].
BARNSLEY, MF .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) :303-329
[4]  
Barnsley MichaelF., 1993, Fractals everywhere, V2nd
[5]   What is not in the domain of the Laplacian on Sierpinski gasket type fractals [J].
Ben-Bassat, O ;
Strichartz, RS ;
Teplyaev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 166 (02) :197-217
[6]  
Carvalho A., 2005, J. Function Spaces and Appl, V3, P287, DOI DOI 10.1155/2005/405979
[7]   Fractal interpolation on the Sierpinski Gasket [J].
Celik, Derya ;
Kocak, Sahin ;
Ozdemir, Yunus .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) :343-347
[8]   ON FRACTAL DIMENSIONS OF FRACTAL FUNCTIONS USING FUNCTION SPACES [J].
Chandra, Subhash ;
Bbas, Syed A. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (03) :470-480
[9]   GEOMETRICAL DIMENSION VERSUS SMOOTHNESS [J].
DELIU, A ;
JAWERTH, B .
CONSTRUCTIVE APPROXIMATION, 1992, 8 (02) :211-222
[10]  
Falconer Kenneth., 1990, Fractal geometry: Mathematical foundations and applications