No eigenvectors embedded in the singular continuous spectrum of Schrödinger operators

被引:0
作者
Ujino, Kota [1 ]
机构
[1] Kyushu Univ, Grad Sch Math, 744 Motooka,Nishi Ku, Fukuoka 8190395, Japan
关键词
47A10;
D O I
10.1007/s13324-024-00948-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In general a Schr & ouml;dinger operator with a sparse potential has singular continuous spectrum, and some open interval is purely singular continuous spectrum. We give a sufficient condition so that the endpoint of the open interval is not an eigenvalue. An example of a Schr & ouml;dinger operator with a negative sparse potential on the half-line which has no nonnegative embedded eigenvalue for any boundary conditions is given.
引用
收藏
页数:14
相关论文
共 5 条
[1]   SINGULAR CONTINUOUS SPECTRUM OF HALF-LINE SCHRODINGER OPERATORS WITH POINT INTERACTIONS ON A SPARSE SET [J].
Lotoreichik, Vladimir .
OPUSCULA MATHEMATICA, 2011, 31 (04) :615-628
[2]   Operators with singular continuous spectrum .5. Sparse potentials [J].
Simon, B ;
Stolz, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (07) :2073-2080
[3]   TRACE CLASS PERTURBATIONS AND THE ABSENCE OF ABSOLUTELY CONTINUOUS SPECTRA [J].
SIMON, B ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (01) :113-125
[4]  
Teschl Gerald, 2009, Graduate Studies in Mathematics, V99, P106
[5]   Sparse potentials with fractional Hausdorff dimension [J].
Zlatos, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 207 (01) :216-252