Photovoltaic- driven dual- oxidation seawater electrolyzer for sustainable lithium recovery

被引:0
作者
Gu, Xiaosong [1 ]
Feng, Xuezhen [1 ]
Yang, Songhe [1 ]
Wang, Ranhao [1 ]
Zeng, Qiang [1 ]
Shangguan, Yangzi [1 ]
Liang, Jiaxin [1 ]
Zhou, Huiling [1 ]
Li, Zhiwei [1 ]
Lin, Zhang [2 ]
Zheng, Chunmiao [1 ,3 ]
Xu, Zhenghe [4 ]
Chen, Hong [1 ]
机构
[1] Southern Univ Sci & Technol, Energy Inst Carbon Neutral, State Environm Protect Key Lab Integrated Surface, Sch Environm Sci & Engn,Shenzhen Key Lab Interfaci, Shenzhen 518055, Peoples R China
[2] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[3] Eastern Inst Technol, Eastern Inst Adv Study, Ningbo 315410, Peoples R China
[4] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
基金
中国博士后科学基金;
关键词
battery recovery; lithium recovery; electrochemical; dual oxidation; photovoltaic; ION BATTERIES;
D O I
10.1073/pnas.2414741121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The insatiable demand for lithium in portable energy storage necessitates a sustainable and low- carbon approach to its recovery. Conventional hydrometallurgical and pyrometallurgical methods heavily involve hazardous chemicals and significant CO2 emissions. Herein, by integrating electrode oxidation with electrolyte oxidation, we establish a photovoltaic- driven "dual- oxidation" seawater electrolyzer system for low- carbon footprint and high lithium recovery. A 98.96% lithium leaching rate with 99.60% product purity was demonstrated for lithium recovery from spent LiFePO4 cathode materials. In- depth mechanism studies reveal that the electric field- driven electrode oxidation and in situ generated oxidative electrolyte synergetically contributes to lithium ions leaching via a structural framework elements oxidation and particle corrosion splitting synergy. This dual- oxidation mechanism facilitates rapid and efficient lithium extraction with broad universality, offering significant economic and environmental benefits. Our work showcases a promising strategy for integrating dual oxidation within a photovoltaic- driven seawater electrolyzer, paving the way for low- carbon lithium recovery from diverse solid wastes and minerals within a sustainable circular economy.
引用
收藏
页数:9
相关论文
共 36 条
  • [1] Armstrong D.A., 2013, BioInorganic React. Mech., V9, P59, DOI [10.1515/irm-2013-0005, DOI 10.1515/IRM-2013-0005]
  • [2] Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
    Assat, Gaurav
    Tarascon, Jean-Marie
    [J]. NATURE ENERGY, 2018, 3 (05): : 373 - 386
  • [3] Electrochemical Methods for Lithium Recovery: A Comprehensive and Critical Review
    Battistel, Alberto
    Palagonia, Maria Sofia
    Brogioli, Doriano
    La Mantia, Fabio
    Trocoli, Rafael
    [J]. ADVANCED MATERIALS, 2020, 32 (23)
  • [4] Examining different recycling processes for lithium-ion batteries
    Ciez, Rebecca E.
    Whitacre, J. F.
    [J]. NATURE SUSTAINABILITY, 2019, 2 (02) : 148 - 156
  • [5] Electric Vehicles Batteries: Requirements and Challenges
    Deng, Jie
    Bae, Chulheung
    Denlinger, Adam
    Miller, Theodore
    [J]. JOULE, 2020, 4 (03) : 511 - 515
  • [6] Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure
    Duffner, Fabian
    Kronemeyer, Niklas
    Tuebke, Jens
    Leker, Jens
    Winter, Martin
    Schmuch, Richard
    [J]. NATURE ENERGY, 2021, 6 (02) : 123 - 134
  • [7] Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation
    Greim, Peter
    Solomon, A. A.
    Breyer, Christian
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [8] How to make lithium extraction cleaner, faster and cheaper - in six steps
    Haddad, Andrew Z. Z.
    Hackl, Lukas
    Akuzum, Bilen
    Pohlman, Garrett
    Magnan, Jean-Francois
    Kostecki, Robert
    [J]. NATURE, 2023, 616 (7956) : 245 - 248
  • [9] Recycling lithium-ion batteries from electric vehicles
    Harper, Gavin
    Sommerville, Roberto
    Kendrick, Emma
    Driscoll, Laura
    Slater, Peter
    Stolkin, Rustam
    Walton, Allan
    Christensen, Paul
    Heidrich, Oliver
    Lambert, Simon
    Abbott, Andrew
    Ryder, Karl S.
    Gaines, Linda
    Anderson, Paul
    [J]. NATURE, 2019, 575 (7781) : 75 - 86
  • [10] The Scherrer equation versus the 'Debye-Scherrer equation'
    Holzwarth, Uwe
    Gibson, Neil
    [J]. NATURE NANOTECHNOLOGY, 2011, 6 (09) : 534 - 534