Input-to-state stabilisation of 1-D time-varying parabolic PDEs involving Dirichlet boundary disturbances by static backstepping control

被引:0
作者
Bi, Yongchun [1 ]
Zheng, Jun [1 ,2 ]
Zhu, Guchuan [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Xipu Campus, Chengdu 611756, Sichuan, Peoples R China
[2] Polytech Montreal, Dept Elect Engn, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Backstepping; parabolic equations; time-varying coefficients; Dirichlet boundary disturbance; input-to-state stability; generalised Lyapunov method; ISS PROPERTIES; STABILITY; RESPECT;
D O I
10.1080/23307706.2025.2477632
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the problem of input-to-state stabilisation for a class of time-varying parabolic PDEs with Dirichlet and Robin boundary disturbances, as well as in-domain disturbances. A static backstepping boundary feedback control employing a time-invariant kernel function is developed, which allows significantly reducing the computational burden in controller design and implementation. The so-called generalised Lyapunov method is applied in the assessment of the input-to-state stability (ISS) of parabolic PDEs, which, compared to the non-Lyapunov methods, considerably eases the establishment of the ISS with respect to the Dirichlet and Robin boundary disturbances in the spatial $ L<^>p $ Lp-norm for the closed-loop system whenever $ p\in [2,\infty ) $ p is an element of[2,infinity). Numerical simulations are conducted to illustrate the validity of the controller and the obtained theoretical results.
引用
收藏
页数:13
相关论文
共 26 条
  • [1] Brezis H, 2011, UNIVERSITEXT, P55, DOI 10.1007/978-0-387-70914-7_3
  • [2] NONCOERCIVE LYAPUNOV FUNCTIONS FOR INPUT-TO-STATE STABILITY OF INFINITE-DIMENSIONAL SYSTEMS
    Jacob, Birgit
    Mironchenko, Andrii
    Partington, Jonathan R.
    Wirth, Fabian
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (05) : 2952 - 2978
  • [3] EVENT-TRIGGERED GAIN SCHEDULING OF REACTION-DIFFUSION PDEs
    Karafyllis, Iasson
    Espitia, Nicolas
    Krstic, Miroslav
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (03) : 2047 - 2067
  • [4] ISS estimates in the spatial sup-norm for nonlinear 1-D parabolic PDEs
    Karafyllis, Iasson
    Krstic, Miroslav
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27 (27)
  • [5] ISS IN DIFFERENT NORMS FOR 1-D PARABOLIC PDES WITH BOUNDARY DISTURBANCES
    Karafyllis, Iasson
    Krstic, Miroslav
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (03) : 1716 - 1751
  • [6] Karafyllis I, 2016, IEEE DECIS CONTR P, P2247, DOI 10.1109/CDC.2016.7798597
  • [7] ISS with Respect to Boundary Disturbances for 1-D Parabolic PDEs
    Karafyllis, Iasson
    Krstic, Miroslav
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (12) : 3712 - 3724
  • [8] Krstic M, 2008, ADV DES CONTROL, P1
  • [9] Ladyenskaja O. A., 1968, Linear and quasi-linear equations of parabolic type
  • [10] Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness
    Meurer, Thomas
    Kugi, Andreas
    [J]. AUTOMATICA, 2009, 45 (05) : 1182 - 1194