Current State of Evidence for Use of MRI in LI-RADS

被引:1
作者
Kulkarni, Ameya Madhav [1 ,2 ]
Kruse, Danielle [3 ,4 ]
Harper, Kelly [5 ]
Lam, Eric [6 ]
Osman, Hoda [6 ]
Ansari, Danyaal H. [6 ]
Sivanesan, Umaseh [7 ]
Bashir, Mustafa R. [3 ,4 ,8 ]
Costa, Andreu F. [9 ,10 ]
Mcinnes, Matthew [5 ,6 ]
van Der Pol, Christian B. [1 ,2 ]
机构
[1] McMaster Univ, Dept Med Imaging, Hamilton Hlth Sci, Hamilton, ON, Canada
[2] Juravinski Hosp & Canc Ctr, Dept Diagnost Imaging, Hamilton Hlth Sci, Hamilton, ON, Canada
[3] Duke Univ, Med Ctr, Dept Radiol, Durham, NC USA
[4] Duke Univ, Med Ctr, Dept Med, Durham, NC USA
[5] Univ Ottawa, Ottawa Hosp, Dept Radiol, Ottawa, ON, Canada
[6] Ottawa Hosp Res Inst, Clin Epidemiol Program, Ottawa, ON, Canada
[7] Kingston Gen Hosp, Kingston Hlth Sci Ctr, Dept Diagnost Radiol, Kingston, ON, Canada
[8] Duke Univ, Ctr Adv Magnet Resonance Dev, Med Ctr, Durham, NC USA
[9] Queen Elizabeth 2 Hlth Sci Ctr, Halifax, NS, Canada
[10] Dalhousie Univ, Halifax, NS, Canada
关键词
carcinoma; diagnostic techniques; digestive system; hepatocellular; liver; magnetic resonance imaging; observer variation; ACID-ENHANCED MRI; HEPATOCELLULAR-CARCINOMA; IMAGING FEATURES; DATA SYSTEM; DIAGNOSTIC-ACCURACY; MAJOR FEATURES; VERSION; 2018; LIVER; NODULES; CT;
D O I
10.1002/jmri.29748
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The American College of Radiology Liver Imaging Reporting and Data System (LI-RADS) is the preeminent framework for classification and risk stratification of liver observations on imaging in patients at high risk for hepatocellular carcinoma. In this review, the pathogenesis of hepatocellular carcinoma and the use of MRI in LI-RADS is discussed, including specifically the LI-RADS diagnostic algorithm, its components, and its reproducibility with reference to the latest supporting evidence. The LI-RADS treatment response algorithms are reviewed, including the more recent radiation treatment response algorithm. The application of artificial intelligence, points of controversy, LI-RADS relative to other liver imaging systems, and possible future directions are explored. After reading this article, the reader will have an understanding of the foundation and application of LI-RADS as well as possible future directions.
引用
收藏
页数:14
相关论文
共 97 条
[1]   Is concurrent LR-5 associated with a higher rate of hepatocellular carcinoma in LR-3 or LR-4 observations? An individual participant data meta-analysis [J].
Abedrabbo, Nicole ;
Lerner, Emily ;
Lam, Eric ;
Kadi, Diana ;
Dawit, Haben ;
van der Pol, Christian ;
Salameh, Jean-Paul ;
Naringrekar, Haresh ;
Adamo, Robert ;
Alabousi, Mostafa ;
Levis, Brooke ;
Tang, An ;
Alhasan, Ayman ;
Arvind, Ashwini ;
Singal, Amit ;
Allen, Brian ;
Bartnik, Krzysztof ;
Podgorska, Joanna ;
Furlan, Alessandro ;
Cannella, Roberto ;
Dioguardi Burgio, Marco ;
Cerny, Milena ;
Choi, Sang Hyun ;
Clarke, Christopher ;
Jing, Xiang ;
Kierans, Andrea ;
Ronot, Maxime ;
Rosiak, Grzegorz ;
Jiang, Hanyu ;
Song, Ji Soo ;
Reiner, Caecilia C. ;
Joo, Ijin ;
Kwon, Heejin ;
Wang, Wentao ;
Rao, Sheng-xiang ;
Diaz Telli, Federico ;
Pinero, Federico ;
Seo, Nieun ;
Kang, Hyo-Jin ;
Wang, Jin ;
Min, Ji Hye ;
Costa, Andreu ;
Mcinnes, Matthew ;
Bashir, Mustafa .
ABDOMINAL RADIOLOGY, 2025, 50 (04) :1533-1546
[2]   Do Risk Factors for HCC Impact the Association of CT/MRI LIRADS Major Features With HCC? An Individual Participant Data Meta-Analysis [J].
Adamo, Robert G. ;
Lam, Eric ;
Salameh, Jean-Paul ;
van der Pol, Christian B. ;
Goins, Stacy M. ;
Dawit, Haben ;
Costa, Andreu F. ;
Levis, Brooke ;
Singal, Amit G. ;
Chernyak, Victoria ;
Sirlin, Claude B. ;
Bashir, Mustafa R. ;
Tang, An ;
Alhasan, Ayman ;
Allen, Brian C. ;
Reiner, Caecilia S. ;
Clarke, Christopher ;
Ludwig, Daniel R. ;
Cerny, Milena ;
Wang, Jin ;
Hyun Choi, Sang ;
Fraum, Tyler J. ;
Song, Bin ;
Joo, Ijin ;
Yeon Kim, So ;
Kwon, Heejin ;
Jiang, Hanyu ;
Kang, Hyo-Jin ;
Kierans, Andrea S. ;
Kim, Yeun-Yoon ;
Ronot, Maxime ;
Podgorska, Joanna ;
Rosiak, Grzegorz ;
Soo Song, Ji ;
McInnes, Matthew D. F. .
CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2025, 76 (03) :466-476
[3]  
American College of Radiology, 2024, Liver Imaging Reporting Data System (LIRADS)
[4]  
American College of Radiology (ACR), 2024, LIRADS CT/MRI Nonradiation TRA v2024,
[5]   LI-RADS Tumor in Vein at CT and Hepatobiliary MRI [J].
Bae, Jae Seok ;
Lee, Jeong Min ;
Jeon, Sun Kyung ;
Yoo, Jeongin ;
Park, Sae-Jin ;
Yoon, Jeong Hee ;
Joo, Ijin ;
Lee, Kyoung-Bun ;
Kim, Haeryoung .
RADIOLOGY, 2022, 302 (01) :107-115
[6]   Clinical implications for imaging of vascular invasion in hepatocellular carcinoma [J].
Baheti, Akshay D. ;
Dunham, Gregor M. ;
Ingraham, Christopher R. ;
Moshiri, Mariam ;
Lall, Chandana ;
Park, James O. ;
Li, David ;
Katz, Douglas S. ;
Madoff, David C. ;
Bhargava, Puneet .
ABDOMINAL RADIOLOGY, 2016, 41 (09) :1800-1810
[7]   Cholangiocarcinoma 2020: the next horizon in mechanisms and management [J].
Banales, Jesus M. ;
Marin, Jose J. G. ;
Lamarca, Angela ;
Rodrigues, Pedro M. ;
Khan, Shahid A. ;
Roberts, Lewis R. ;
Cardinale, Vincenzo ;
Carpino, Guido ;
Andersen, Jesper B. ;
Braconi, Chiara ;
Calvisi, Diego F. ;
Perugorria, Maria J. ;
Fabris, Luca ;
Boulter, Luke ;
Macias, Rocio I. R. ;
Gaudio, Eugenio ;
Alvaro, Domenico ;
Gradilone, Sergio A. ;
Strazzabosco, Mario ;
Marzioni, Marco ;
Coulouarn, Cedric ;
Fouassier, Laura ;
Raggi, Chiara ;
Invernizzi, Pietro ;
Mertens, Joachim C. ;
Moncsek, Anja ;
Rizvi, Sumera ;
Heimbach, Julie ;
Koerkamp, Bas Groot ;
Bruix, Jordi ;
Forner, Alejandro ;
Bridgewater, John ;
Valle, Juan W. ;
Gores, Gregory J. .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2020, 17 (09) :557-588
[8]   A novel radiomics approach for predicting TACE outcomes in hepatocellular carcinoma patients using deep learning for multi-organ segmentation [J].
Bartnik, Krzysztof ;
Krzyzinski, Mateusz ;
Bartczak, Tomasz ;
Korzeniowski, Krzysztof ;
Lamparski, Krzysztof ;
Wroblewski, Tadeusz ;
Grat, Michal ;
Holowko, Waclaw ;
Mech, Katarzyna ;
Lisowska, Joanna ;
Januszewicz, Magdalena ;
Biecek, Przemyslaw .
SCIENTIFIC REPORTS, 2024, 14 (01)
[9]   Training Strategies for Radiology Deep Learning Models in Data-limited Scenarios [J].
Candemir, Sema ;
Nguyen, Xuan, V ;
Folio, Les R. ;
Prevedello, Luciano M. .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (06)
[10]   Tumor in vein (LR-TIV) and liver imaging reporting and data system (LI-RADS) v2018: diagnostic features, pitfalls, prognostic and management implications [J].
Catania, Roberta ;
Chupetlovska, Kalina ;
Borhani, Amir A. ;
Maheshwari, Ekta ;
Furlan, Alessandro .
ABDOMINAL RADIOLOGY, 2021, 46 (12) :5723-5734