Current State of Evidence for Use of MRI in LI-RADS

被引:0
作者
Kulkarni, Ameya Madhav [1 ,2 ]
Kruse, Danielle [3 ,4 ]
Harper, Kelly [5 ]
Lam, Eric [6 ]
Osman, Hoda [6 ]
Ansari, Danyaal H. [6 ]
Sivanesan, Umaseh [7 ]
Bashir, Mustafa R. [3 ,4 ,8 ]
Costa, Andreu F. [9 ,10 ]
Mcinnes, Matthew [5 ,6 ]
van Der Pol, Christian B. [1 ,2 ]
机构
[1] McMaster Univ, Dept Med Imaging, Hamilton Hlth Sci, Hamilton, ON, Canada
[2] Juravinski Hosp & Canc Ctr, Dept Diagnost Imaging, Hamilton Hlth Sci, Hamilton, ON, Canada
[3] Duke Univ, Med Ctr, Dept Radiol, Durham, NC USA
[4] Duke Univ, Med Ctr, Dept Med, Durham, NC USA
[5] Univ Ottawa, Ottawa Hosp, Dept Radiol, Ottawa, ON, Canada
[6] Ottawa Hosp Res Inst, Clin Epidemiol Program, Ottawa, ON, Canada
[7] Kingston Gen Hosp, Kingston Hlth Sci Ctr, Dept Diagnost Radiol, Kingston, ON, Canada
[8] Duke Univ, Ctr Adv Magnet Resonance Dev, Med Ctr, Durham, NC USA
[9] Queen Elizabeth 2 Hlth Sci Ctr, Halifax, NS, Canada
[10] Dalhousie Univ, Halifax, NS, Canada
关键词
carcinoma; diagnostic techniques; digestive system; hepatocellular; liver; magnetic resonance imaging; observer variation; ACID-ENHANCED MRI; HEPATOCELLULAR-CARCINOMA; IMAGING FEATURES; DATA SYSTEM; DIAGNOSTIC-ACCURACY; MAJOR FEATURES; VERSION; 2018; LIVER; NODULES; CT;
D O I
10.1002/jmri.29748
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The American College of Radiology Liver Imaging Reporting and Data System (LI-RADS) is the preeminent framework for classification and risk stratification of liver observations on imaging in patients at high risk for hepatocellular carcinoma. In this review, the pathogenesis of hepatocellular carcinoma and the use of MRI in LI-RADS is discussed, including specifically the LI-RADS diagnostic algorithm, its components, and its reproducibility with reference to the latest supporting evidence. The LI-RADS treatment response algorithms are reviewed, including the more recent radiation treatment response algorithm. The application of artificial intelligence, points of controversy, LI-RADS relative to other liver imaging systems, and possible future directions are explored. After reading this article, the reader will have an understanding of the foundation and application of LI-RADS as well as possible future directions.
引用
收藏
页数:14
相关论文
共 97 条
  • [1] Is concurrent LR-5 associated with a higher rate of hepatocellular carcinoma in LR-3 or LR-4 observations? An individual participant data meta-analysis
    Abedrabbo, Nicole
    Lerner, Emily
    Lam, Eric
    Kadi, Diana
    Dawit, Haben
    van der Pol, Christian
    Salameh, Jean-Paul
    Naringrekar, Haresh
    Adamo, Robert
    Alabousi, Mostafa
    Levis, Brooke
    Tang, An
    Alhasan, Ayman
    Arvind, Ashwini
    Singal, Amit
    Allen, Brian
    Bartnik, Krzysztof
    Podgorska, Joanna
    Furlan, Alessandro
    Cannella, Roberto
    Burgio, Marco Dioguardi
    Cerny, Milena
    Choi, Sang Hyun
    Clarke, Christopher
    Jing, Xiang
    Kierans, Andrea
    Ronot, Maxime
    Rosiak, Grzegorz
    Jiang, Hanyu
    Song, Ji Soo
    Reiner, Caecilia C.
    Joo, Ijin
    Kwon, Heejin
    Wang, Wentao
    Rao, Sheng-xiang
    Diaz Telli, Federico
    Pinero, Federico
    Seo, Nieun
    Kang, Hyo-Jin
    Wang, Jin
    Min, Ji Hye
    Costa, Andreu
    Mcinnes, Matthew
    Bashir, Mustafa
    [J]. ABDOMINAL RADIOLOGY, 2024, : 1533 - 1546
  • [2] Adamo Robert G, 2024, Can Assoc Radiol J, p8465371241306297, DOI 10.1177/08465371241306297
  • [3] American College of Radiology, 2024, Liver Imaging Reporting Data System (LIRADS)
  • [4] American College of Radiology (ACR), 2024, LIRADS CT/MRI Nonradiation TRA v2024,
  • [5] LI-RADS Tumor in Vein at CT and Hepatobiliary MRI
    Bae, Jae Seok
    Lee, Jeong Min
    Jeon, Sun Kyung
    Yoo, Jeongin
    Park, Sae-Jin
    Yoon, Jeong Hee
    Joo, Ijin
    Lee, Kyoung-Bun
    Kim, Haeryoung
    [J]. RADIOLOGY, 2022, 302 (01) : 107 - 115
  • [6] Clinical implications for imaging of vascular invasion in hepatocellular carcinoma
    Baheti, Akshay D.
    Dunham, Gregor M.
    Ingraham, Christopher R.
    Moshiri, Mariam
    Lall, Chandana
    Park, James O.
    Li, David
    Katz, Douglas S.
    Madoff, David C.
    Bhargava, Puneet
    [J]. ABDOMINAL RADIOLOGY, 2016, 41 (09) : 1800 - 1810
  • [7] Cholangiocarcinoma 2020: the next horizon in mechanisms and management
    Banales, Jesus M.
    Marin, Jose J. G.
    Lamarca, Angela
    Rodrigues, Pedro M.
    Khan, Shahid A.
    Roberts, Lewis R.
    Cardinale, Vincenzo
    Carpino, Guido
    Andersen, Jesper B.
    Braconi, Chiara
    Calvisi, Diego F.
    Perugorria, Maria J.
    Fabris, Luca
    Boulter, Luke
    Macias, Rocio I. R.
    Gaudio, Eugenio
    Alvaro, Domenico
    Gradilone, Sergio A.
    Strazzabosco, Mario
    Marzioni, Marco
    Coulouarn, Cedric
    Fouassier, Laura
    Raggi, Chiara
    Invernizzi, Pietro
    Mertens, Joachim C.
    Moncsek, Anja
    Rizvi, Sumera
    Heimbach, Julie
    Koerkamp, Bas Groot
    Bruix, Jordi
    Forner, Alejandro
    Bridgewater, John
    Valle, Juan W.
    Gores, Gregory J.
    [J]. NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2020, 17 (09) : 557 - 588
  • [8] A novel radiomics approach for predicting TACE outcomes in hepatocellular carcinoma patients using deep learning for multi-organ segmentation
    Bartnik, Krzysztof
    Krzyzinski, Mateusz
    Bartczak, Tomasz
    Korzeniowski, Krzysztof
    Lamparski, Krzysztof
    Wroblewski, Tadeusz
    Grat, Michal
    Holowko, Waclaw
    Mech, Katarzyna
    Lisowska, Joanna
    Januszewicz, Magdalena
    Biecek, Przemyslaw
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [9] Training Strategies for Radiology Deep Learning Models in Data-limited Scenarios
    Candemir, Sema
    Nguyen, Xuan, V
    Folio, Les R.
    Prevedello, Luciano M.
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (06)
  • [10] Tumor in vein (LR-TIV) and liver imaging reporting and data system (LI-RADS) v2018: diagnostic features, pitfalls, prognostic and management implications
    Catania, Roberta
    Chupetlovska, Kalina
    Borhani, Amir A.
    Maheshwari, Ekta
    Furlan, Alessandro
    [J]. ABDOMINAL RADIOLOGY, 2021, 46 (12) : 5723 - 5734