The Formation of an Interface and Its Energy Levels Inside a Band Gap in InAs/GaSb/AlSb/GaSb M-Structures

被引:0
作者
Sliz, Pawel [1 ]
Jarosz, Dawid [1 ]
Pasternak, Marta [1 ]
Marchewka, Michal [1 ]
机构
[1] Univ Rzeszow, Inst Mat Engn, Ctr Microelect & Nanotechnol, Al Rejtana 16c, PL-35959 Rzeszow, Poland
关键词
semiconductors; 2D materials; superlattices; infrared photodetectors; band gap; optical absorption spectroscopy; high resolution X-ray diffraction; k<middle dot>p perturbation theory; Dirac fermions; computer simulations; INAS/GASB SUPERLATTICE;
D O I
10.3390/ma18050991
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We studied specially designed InAs/GaSb/AlSb/GaSb M-structures, a type-II superlattice (T2SL), that can serve as active materials for short-wavelength infrared (SWIR) applications. To obtain the dispersion relation of the investigated M-structures, k<middle dot>p perturbation theory based on the eight-band model implemented in the nextnano++ v1.18.1 (nextnano GmbH, Munich, Germany) software was used. Numerical band-gap engineering and dispersion calculations for the investigated M-structures (composed of 6/1/5/1 monolayers, with InSb interfaces included) revealed the presence of an additional energy level within the energy gap. This energy level originates from the InSb-like interfaces and does not appear in structures with different layer or interface thicknesses. Its properties strongly depend on interface thickness, temperature, and strain. Numerical calculations of the probability density function |Psi|2, absorption coefficients, and optical absorption spectra at varying temperatures demonstrate that, under specific conditions, such as an optimised interface thickness and temperature, optical absorption increases significantly. These theoretical results are based on structures fabricated using molecular-beam epitaxy (MBE) technology. High-resolution X-ray diffraction (HRXRD) measurements confirm the high crystallographic quality of these M-structures.
引用
收藏
页数:20
相关论文
共 24 条
  • [1] 8-BANK K.P MODEL OF STRAINED ZINCBLENDE CRYSTALS
    BAHDER, TB
    [J]. PHYSICAL REVIEW B, 1990, 41 (17): : 11992 - 12001
  • [2] Birner S., 2011, Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces", Technical University Muenchen, Germany
  • [3] nextnano: General purpose 3-D simulations
    Birner, Stefan
    Zibold, Tobias
    Andlauer, Till
    Kubis, Tillmann
    Sabathil, Matthias
    Trellakis, Alex
    Vogl, Peter
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (09) : 2137 - 2142
  • [4] Design of InAs/GaSb superlattice infrared barrier detectors
    Delmas, M.
    Rossignol, R.
    Rodriguez, J. B.
    Christol, P.
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2017, 104 : 402 - 414
  • [5] Theoretical analysis on the energy band properties of N- and M-structure type-II superlattices
    Du, Ya-nan
    Xu, Yun
    Song, Guo-feng
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2020, 145
  • [6] Metamorphic narrow-gap InSb/InAsSb superlattices with ultra-thin layers
    Ermolaev, Maksim
    Suchalkin, Sergey
    Belenky, Gregory
    Kipshidze, Gela
    Laikhtman, Boris
    Moon, Seongphill
    Ozerov, Mykhaylo
    Smirnov, Dmitry
    Svensson, Stefan P.
    Sarney, Wendy L.
    [J]. APPLIED PHYSICS LETTERS, 2018, 113 (21)
  • [7] Band-tailored InAs/GaSb superlattice in infrared application
    Guo, Jie
    Hao, Ruiting
    Zhao, Qianrun
    Man, Shiqing
    [J]. ADVANCED ENGINEERING MATERIALS III, PTS 1-3, 2013, 750-752 : 936 - 940
  • [8] Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices
    Hoang, A. M.
    Chen, G.
    Haddadi, A.
    Pour, S. Abdollahi
    Razeghi, M.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (21)
  • [9] Massless Dirac fermions in III-V semiconductor quantum wells
    Krishtopenko, S. S.
    Desrat, W.
    Spirin, K. E.
    Consejo, C.
    Ruffenach, S.
    Gonzalez-Posada, F.
    Jouault, B.
    Knap, W.
    Maremyanin, K., V
    Gavrilenko, V., I
    Boissier, G.
    Torres, J.
    Zaknoune, M.
    Tournie, E.
    Teppe, F.
    [J]. PHYSICAL REVIEW B, 2019, 99 (12)
  • [10] Quantum spin Hall insulator with a large bandgap, Dirac fermions, and bilayer graphene analog
    Krishtopenko, Sergey S.
    Teppe, Frederic
    [J]. SCIENCE ADVANCES, 2018, 4 (04):