Protein identification using Cryo-EM and artificial intelligence guides improved sample purification

被引:2
作者
Carr, Kenneth D. [1 ,2 ]
Zambrano, Dane Evan D. [1 ,2 ]
Weidle, Connor [1 ,2 ]
Goodson, Alex [1 ,2 ]
Eisenach, Helen E. [1 ,2 ]
Pyles, Harley [1 ,2 ]
Courbet, Alexis [1 ,2 ]
King, Neil P. [1 ,2 ]
Borst, Andrew J. [1 ,2 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Protein Purification; Contamination; Cryo-Electron Microscopy; Cryo-EM; DLST; Dihydrolipoamide Succinyltransferase; Dihydrolipoyllysine-residue succinyltransferase; E; coli; Tricarboxylic Acid Cycle; TCA Cycle; ModelAngelo; Automated Model Building; Multiple Sequence Alignment; Protein BLAST; Hmmsearch; Protein Data Bank; PDB; AlphaFold; 3; Structure Prediction; Western Blot; ESCHERICHIA-COLI; STRUCTURAL-ANALYSIS; CATALYTIC DOMAIN; ACCURATE DESIGN; VISUALIZATION; FORM;
D O I
10.1016/j.yjsbx.2025.100120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein purification is essential in protein biochemistry, structural biology, and protein design, enabling the determination of protein structures, the study of biological mechanisms, and the characterization of both natural and de novo designed proteins. However, standard purification strategies often encounter challenges, such as unintended co-purification of contaminants alongside the target protein. This issue is particularly problematic for self-assembling protein nanomaterials, where unexpected geometries may reflect novel assembly states, crosscontamination, or native proteins originating from the expression host. Here, we used an automated structureto-sequence pipeline to first identify an unknown co-purifying protein found in several purified designed protein samples. By integrating cryo-electron microscopy (Cryo-EM), ModelAngelo's sequence-agnostic modelbuilding, and Protein BLAST, we identified the contaminant as dihydrolipoamide succinyltransferase (DLST). This identification was validated through comparisons with DLST structures in the Protein Data Bank, AlphaFold 3 predictions based on the DLST sequence from our E. coli expression vector, and traditional biochemical methods. The identification informed subsequent modifications to our purification protocol, which successfully excluded DLST from future preparations. To explore the potential broader utility of this approach, we benchmarked four computational methods for DLST identification across varying resolution ranges. This study demonstrates the successful application of a structure-to-sequence protein identification workflow, integrating CryoEM, ModelAngelo, Protein BLAST, and AlphaFold 3 predictions, to identify and ultimately help guide theremoval of DLST from sample purification efforts. It highlights the potential of combining Cryo-EM with AI-driven tools for accurate protein identification and addressing purification challenges across diverse contexts in protein science.
引用
收藏
页数:12
相关论文
共 44 条
[1]   Accurate structure prediction of biomolecular interactions with AlphaFold 3 [J].
Abramson, Josh ;
Adler, Jonas ;
Dunger, Jack ;
Evans, Richard ;
Green, Tim ;
Pritzel, Alexander ;
Ronneberger, Olaf ;
Willmore, Lindsay ;
Ballard, Andrew J. ;
Bambrick, Joshua ;
Bodenstein, Sebastian W. ;
Evans, David A. ;
Hung, Chia-Chun ;
O'Neill, Michael ;
Reiman, David ;
Tunyasuvunakool, Kathryn ;
Wu, Zachary ;
Zemgulyte, Akvile ;
Arvaniti, Eirini ;
Beattie, Charles ;
Bertolli, Ottavia ;
Bridgland, Alex ;
Cherepanov, Alexey ;
Congreve, Miles ;
Cowen-Rivers, Alexander I. ;
Cowie, Andrew ;
Figurnov, Michael ;
Fuchs, Fabian B. ;
Gladman, Hannah ;
Jain, Rishub ;
Khan, Yousuf A. ;
Low, Caroline M. R. ;
Perlin, Kuba ;
Potapenko, Anna ;
Savy, Pascal ;
Singh, Sukhdeep ;
Stecula, Adrian ;
Thillaisundaram, Ashok ;
Tong, Catherine ;
Yakneen, Sergei ;
Zhong, Ellen D. ;
Zielinski, Michal ;
Zidek, Augustin ;
Bapst, Victor ;
Kohli, Pushmeet ;
Jaderberg, Max ;
Hassabis, Demis ;
Jumper, John M. .
NATURE, 2024, 630 (8016) :493-500
[2]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[3]   Structure of the dihydrolipoamide succinyltransferase catalytic domain from Escherichia coli in a novel crystal form: a tale of a common protein crystallization contaminant [J].
Andi, Babak ;
Soares, Alexei S. ;
Shi, Wuxian ;
Fuchs, Martin R. ;
McSweeney, Sean ;
Liu, Qun .
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2019, 75 :616-624
[4]  
[Anonymous], 2023, Nucleic Acids Res., V51, pD523, DOI DOI 10.1093/NAR/GKAC1052
[5]   Suppression of protein interactions by arginine: A proposed mechanism of the arginine effects [J].
Arakawa, Tsutomu ;
Ejima, Daisuke ;
Tsumoto, Kouhei ;
Obeyama, Noriyuki ;
Tanaka, Yoshikazu ;
Kita, Yoshiko ;
Timasheff, Serge N. .
BIOPHYSICAL CHEMISTRY, 2007, 127 (1-2) :1-8
[6]   Accurate design of megadalton-scale two-component icosahedral protein complexes [J].
Bale, Jacob B. ;
Gonen, Shane ;
Liu, Yuxi ;
Sheffler, William ;
Ellis, Daniel ;
Thomas, Chantz ;
Cascio, Duilio ;
Yeates, Todd O. ;
Gonen, Tamir ;
King, Neil P. ;
Baker, David .
SCIENCE, 2016, 353 (6297) :389-394
[7]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[8]   Structural analysis and classification of native proteins from E-coli commonly co-purified by immobilised metal affinity chromatography [J].
Bolanos-Garcia, Victor Martin ;
Davies, Owen Richard .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2006, 1760 (09) :1304-1313
[9]  
Bornhorst JA, 2000, METHOD ENZYMOL, V326, P245
[10]   Protein Data Bank: the single global archive for 3D macromolecular structure data [J].
Burley, Stephen K. ;
Berman, Helen M. ;
Bhikadiya, Charmi ;
Bi, Chunxiao ;
Chen, Li ;
Di Costanzo, Luigi ;
Christie, Cole ;
Duarte, Jose M. ;
Dutta, Shuchismita ;
Feng, Zukang ;
Ghosh, Sutapa ;
Goodsell, David S. ;
Green, Rachel Kramer ;
Guranovic, Vladimir ;
Guzenko, Dmytro ;
Hudson, Brian P. ;
Liang, Yuhe ;
Lowe, Robert ;
Peisach, Ezra ;
Periskova, Irina ;
Randle, Chris ;
Rose, Alexander ;
Sekharan, Monica ;
Shao, Chenghua ;
Tao, Yi-Ping ;
Valasatava, Yana ;
Voigt, Maria ;
Westbrook, John ;
Young, Jasmine ;
Zardecki, Christine ;
Zhuravleva, Marina ;
Kurisu, Genji ;
Nakamura, Haruki ;
Kengaku, Yumiko ;
Cho, Hasumi ;
Sato, Junko ;
Kim, Ju Yaen ;
Ikegawa, Yasuyo ;
Nakagawa, Atsushi ;
Yamashita, Reiko ;
Kudou, Takahiro ;
Bekker, Gert-Jan ;
Suzuki, Hirofumi ;
Iwata, Takeshi ;
Yokochi, Masashi ;
Kobayashi, Naohiro ;
Fujiwara, Toshimichi ;
Velankar, Sameer ;
Kleywegt, Gerard J. ;
Anyango, Stephen .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D520-D528