PointFaceFormer: local and global attention based transformer for 3D point cloud face recognition

被引:0
作者
Gao, Ziqi [1 ,2 ]
Li, Qiufu [1 ,2 ]
Wang, Gui [1 ,2 ,3 ]
Shen, Linlin [1 ,2 ,3 ]
机构
[1] Shenzhen Univ, Comp Vis Inst, Shenzhen, Peoples R China
[2] Shenzhen Univ, Natl Engn Lab Big Data Syst Comp Technol, Shenzhen, Peoples R China
[3] Univ Nottingham, Dept Comp Sci, Ningbo, Peoples R China
来源
2024 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, FG 2024 | 2024年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/FG59268.2024.10581966
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing 3D point cloud-based facial recognition struggles to fully leverage both global and local information inherent in the 3D point cloud data. In this paper, we introduce the PointFaceFormer, the first Transformer model designed for 3D point cloud face recognition. It incorporates an attention mechanism based on dot product and cosine functions to construct a similarity Transformer architecture, which effectively extracts both local and global features from the point cloud data. Experimental results demonstrate that PointFaceFormer achieves a recognition accuracy of 89.08% and a verification accuracy of 76.93% on the large-scale facial point cloud dataset Lock3DFace, which is a new state-of-the-art in 3D face recognition. Furthermore, PointFaceFormer exhibits excellent generalization performance on cross-quality datasets. Additionally, we validate the effectiveness of the attention mechanism through ablation experiments, which justify the effectiveness of the proposed modules.
引用
收藏
页数:8
相关论文
共 32 条
[11]   Swin Transformer V2: Scaling Up Capacity and Resolution [J].
Liu, Ze ;
Hu, Han ;
Lin, Yutong ;
Yao, Zhuliang ;
Xie, Zhenda ;
Wei, Yixuan ;
Ning, Jia ;
Cao, Yue ;
Zhang, Zheng ;
Dong, Li ;
Wei, Furu ;
Guo, Baining .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :11999-12009
[12]   Swin Transformer: Hierarchical Vision Transformer using Shifted Windows [J].
Liu, Ze ;
Lin, Yutong ;
Cao, Yue ;
Hu, Han ;
Wei, Yixuan ;
Zhang, Zheng ;
Lin, Stephen ;
Guo, Baining .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9992-10002
[13]   Led3D: A Lightweight and Efficient Deep Approach to Recognizing Low-quality 3D Faces [J].
Mu, Guodong ;
Huang, Di ;
Hu, Guosheng ;
Sun, Jia ;
Wang, Yunhong .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5766-5775
[14]   3D Face Recognition using Kernel-based PCA Approach [J].
Peter, Marcella ;
Minoi, Jacey-Lynn ;
Hipiny, Irwandi Hipni Mohamad .
COMPUTATIONAL SCIENCE AND TECHNOLOGY, 2019, 481 :77-86
[15]  
Phillips P.J., 2004, BIOM CONS C, P247
[16]  
Qi CR, 2017, ADV NEUR IN, V30
[17]   PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation [J].
Qi, Charles R. ;
Su, Hao ;
Mo, Kaichun ;
Guibas, Leonidas J. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :77-85
[18]   MobileNetV2: Inverted Residuals and Linear Bottlenecks [J].
Sandler, Mark ;
Howard, Andrew ;
Zhu, Menglong ;
Zhmoginov, Andrey ;
Chen, Liang-Chieh .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4510-4520
[19]  
Savran A, 2008, LECT NOTES COMPUT SC, V5372, P47, DOI 10.1007/978-3-540-89991-4_6
[20]   Research on 3D face recognition method based on LBP and SVM [J].
Shi, Liangliang ;
Wang, Xia ;
Shen, Yongliang .
OPTIK, 2020, 220