PointFaceFormer: local and global attention based transformer for 3D point cloud face recognition

被引:0
作者
Gao, Ziqi [1 ,2 ]
Li, Qiufu [1 ,2 ]
Wang, Gui [1 ,2 ,3 ]
Shen, Linlin [1 ,2 ,3 ]
机构
[1] Shenzhen Univ, Comp Vis Inst, Shenzhen, Peoples R China
[2] Shenzhen Univ, Natl Engn Lab Big Data Syst Comp Technol, Shenzhen, Peoples R China
[3] Univ Nottingham, Dept Comp Sci, Ningbo, Peoples R China
来源
2024 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, FG 2024 | 2024年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/FG59268.2024.10581966
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing 3D point cloud-based facial recognition struggles to fully leverage both global and local information inherent in the 3D point cloud data. In this paper, we introduce the PointFaceFormer, the first Transformer model designed for 3D point cloud face recognition. It incorporates an attention mechanism based on dot product and cosine functions to construct a similarity Transformer architecture, which effectively extracts both local and global features from the point cloud data. Experimental results demonstrate that PointFaceFormer achieves a recognition accuracy of 89.08% and a verification accuracy of 76.93% on the large-scale facial point cloud dataset Lock3DFace, which is a new state-of-the-art in 3D face recognition. Furthermore, PointFaceFormer exhibits excellent generalization performance on cross-quality datasets. Additionally, we validate the effectiveness of the attention mechanism through ablation experiments, which justify the effectiveness of the proposed modules.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Grad-CAM plus plus : Generalized Gradient-based Visual Explanations for Deep Convolutional Networks [J].
Chattopadhay, Aditya ;
Sarkar, Anirban ;
Howlader, Prantik ;
Balasubramanian, Vineeth N. .
2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, :839-847
[2]   Improving 2D Face Recognition via Discriminative Face Depth Estimation [J].
Cui, Jiyun ;
Zhang, Hao ;
Han, Hu ;
Shan, Shiguang ;
Chen, Xilin .
2018 INTERNATIONAL CONFERENCE ON BIOMETRICS (ICB), 2018, :140-147
[3]   The farthest point strategy for progressive image sampling [J].
Eldar, Y ;
Lindenbaum, M ;
Porat, M ;
Zeevi, YY .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (09) :1305-1315
[4]   PCT: Point cloud transformer [J].
Guo, Meng-Hao ;
Cai, Jun-Xiong ;
Liu, Zheng-Ning ;
Mu, Tai-Jiang ;
Martin, Ralph R. ;
Hu, Shi-Min .
COMPUTATIONAL VISUAL MEDIA, 2021, 7 (02) :187-199
[5]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[6]   RSCNN: A CNN-Based Method to Enhance Low-Light Remote-Sensing Images [J].
Hu, Linshu ;
Qin, Mengjiao ;
Zhang, Feng ;
Du, Zhenhong ;
Liu, Renyi .
REMOTE SENSING, 2021, 13 (01) :1-13
[7]   PointFace: Point Set Based Feature Learning for 3D Face Recognition [J].
Jiang, Changyuan ;
Lin, Shisong ;
Chen, Wei ;
Liu, Feng ;
Shen, Linlin .
2021 INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2021), 2021,
[8]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[9]   Pose-invariant 3D face recognition using half face [J].
Liang, Yan ;
Zhang, Yun ;
Zeng, Xian-Xian .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2017, 57 :84-90
[10]   High Quality Facial Data Synthesis and Fusion for 3D Low-quality Face Recognition [J].
Lin, Shisong ;
Jiang, Changyuan ;
Liu, Feng ;
Shen, Linlin .
2021 INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2021), 2021,