Artificial Intelligence-Assisted Perfusion Density as Biomarker for Screening Diabetic Nephropathy

被引:3
作者
Xie, Xiao [1 ,3 ]
Wang, Wenqi [4 ]
Wang, Hongyan [1 ,3 ]
Zhang, Zhiping [5 ]
Yuan, Xiaomeng [1 ,3 ]
Shi, Yanmei [5 ]
Liu, Yanfeng [6 ]
Zhou, Qingjun [2 ,7 ]
Liu, Tingting [1 ,3 ]
机构
[1] Shandong First Med Univ, Eye Hosp, Shandong Eye Hosp, Eye Inst, Jinan 250021, Peoples R China
[2] Shandong Prov Key Lab Ophthalmol, State Key Lab Cultivat Base, Qingdao, Peoples R China
[3] Shandong First Med Univ, Sch Ophthalmol, Jinan, Peoples R China
[4] Shandong First Med Univ, Shandong Prov Qianfoshan Hosp, Affiliated Hosp 1, Dept Chinese Med Ophthalmol, Jinan, Peoples R China
[5] Shandong Univ Tradit Chinese Med, Clin Med Coll 1, Jinan, Peoples R China
[6] Jinan Hlth Care Ctr Women & Children, Jinan, Peoples R China
[7] Shandong First Med Univ, Qingdao Eye Hosp, Qingdao, Peoples R China
关键词
diabetic retinopathy; diabetic nephropathy; ultra-widefield; swept-source optical coherence tomography angiography; perfusion density; artificial intelligence; RENAL BIOPSY; RETINOPATHY; POPULATION; FEATURES; DISEASE;
D O I
10.1167/tvst.13.10.19
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To identify a reliable biomarker for screening diabetic nephropathy (DN) using artificial intelligence (AI)-assisted ultra-widefield swept-source optical coherence tomography angiography (UWF SS-OCTA). Methods: This study analyzed data from 169 patients (287 eyes) with type 2 diabetes mellitus (T2DM), resulting in 15,211 individual data points. These data points included basic demographic information, clinical data, and retinal and choroidal data obtained through UWF SS-OCTA for each eye. Statistical analysis, 10-fold cross-validation, and the random forest approach were employed for data processing. Results: The degree of retinal microvascular damage in the diabetic retinopathy (DR) with the DN group was significantly greater than in the DR without DN group, as measured by SS-OCTA parameters. There were strong associations between perfusion density (PD) and DN diagnosis in both the T2DM population (r = - 0.562 to - 0.481, < 0.001) and the DR population (r = - 0.397 to - 0.357, P < 0.001). The random forest model showed an average classification accuracy of 85.8442% for identifying DN patients based on perfusion density in the T2DM population and 82.5739% in the DR population. Conclusions: Quantitative analysis of microvasculature reveals a correlation between DR and DN. UWF PD may serve as a significant and noninvasive biomarker for evaluating DN in patients through deep learning. AI-assisted SS-OCTA could be a rapid and reliable tool for screening DN.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Artificial intelligence-assisted design, synthesis and analysis of smart biomaterials [J].
Jiang, Pengfei ;
Dai, Yefei ;
Hou, Yujun ;
Stein, Joshua ;
Lin, Shichen Steven ;
Zhou, Chaochen ;
Hou, Yannan ;
Zhu, Rongrong ;
Lee, Ki-Bum ;
Yang, Letao .
BMEMAT, 2025,
[42]   Patients Perceptions of Artificial Intelligence in Diabetic Eye Screening [J].
Yap, Aaron ;
Wilkinson, Benjamin ;
Chen, Eileen ;
Han, Lydia ;
Vaghefi, Ehsan ;
Galloway, Chris ;
Squirrell, David .
ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY, 2022, 11 (03) :287-293
[43]   Diabetic retinopathy screening in the emerging era of artificial intelligence [J].
Grauslund, Jakob .
DIABETOLOGIA, 2022, 65 (09) :1415-1423
[44]   Artificial intelligence for diabetic retinopathy screening, prediction and management [J].
Gunasekeran, Dinesh V. ;
Ting, Daniel S. W. ;
Tan, Gavin S. W. ;
Wong, Tien Y. .
CURRENT OPINION IN OPHTHALMOLOGY, 2020, 31 (05) :357-365
[45]   Diabetic retinopathy screening in the emerging era of artificial intelligence [J].
Jakob Grauslund .
Diabetologia, 2022, 65 :1415-1423
[46]   Artificial intelligence for telemedicine diabetic retinopathy screening: a review [J].
Nakayama, Luis Filipe ;
Zago Ribeiro, Lucas ;
Novaes, Frederico ;
Miyawaki, Isabele Ayumi ;
Miyawaki, Andresa Emy ;
de Oliveira, Juliana Angelica Estevao ;
Oliveira, Talita ;
Malerbi, Fernando Korn ;
Regatieri, Caio Vinicius Saito ;
Celi, Leo Anthony ;
Silva, Paolo S. .
ANNALS OF MEDICINE, 2023, 55 (02)
[47]   Diabetic retinopathy screening with confocal fundus camera and artificial intelligence - assisted grading [J].
Piatti, A. ;
Rui, C. ;
Gazzina, S. ;
Tartaglino, B. ;
Romeo, F. ;
Manti, R. ;
Doglio, M. ;
Nada, E. ;
Giorda, C. B. .
EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2025, 35 (02) :679-688
[48]   Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma [J].
Gozzi, Fabrizio ;
Bertolini, Marco ;
Gentile, Pietro ;
Verzellesi, Laura ;
Trojani, Valeria ;
De Simone, Luca ;
Bolletta, Elena ;
Mastrofilippo, Valentina ;
Farnetti, Enrico ;
Nicoli, Davide ;
Croci, Stefania ;
Belloni, Lucia ;
Zerbini, Alessandro ;
Adani, Chantal ;
De Maria, Michele ;
Kosmarikou, Areti ;
Vecchi, Marco ;
Invernizzi, Alessandro ;
Ilariucci, Fiorella ;
Zanelli, Magda ;
Iori, Mauro ;
Cimino, Luca .
DIAGNOSTICS, 2023, 13 (14)
[49]   Artificial intelligence-assisted telemedicine platform for cataract screening and management: a potential model of care for global eye health [J].
Ting, Darren Shu Jeng ;
Ang, Marcus ;
Mehta, Jodhbir S. ;
Ting, Daniel Shu Wei .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2019, 103 (11) :1537-1538
[50]   Artificial Intelligence-Assisted Diagnostic Cytology and Genomic Testing for Hematologic Disorders [J].
Gedefaw, Lealem ;
Liu, Chia-Fei ;
Ip, Rosalina Ka Ling ;
Tse, Hing-Fung ;
Yeung, Martin Ho Yin ;
Yip, Shea Ping ;
Huang, Chien-Ling .
CELLS, 2023, 12 (13)