Adaptive Conformal Inference for Multi-Step Ahead Time-Series Forecasting Online

被引:0
|
作者
Szabadvary, Johan Hallberg [1 ]
机构
[1] Jonkoping Univ, Dept Comp, Jonkoping, Sweden
来源
13TH SYMPOSIUM ON CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS | 2024年 / 230卷
关键词
Conformal Prediction; Time-series; ACI; Multi-step ahead; Ridge regression;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of this paper is to propose an adaptation of the well known adaptive conformal inference (ACI) algorithm to achieve finite-sample coverage guarantees in multi-step ahead time-series forecasting in the online setting. ACI dynamically adjusts significance levels, and comes with finite-sample guarantees on coverage, even for non-exchangeable data. Our multi-step ahead ACI procedure inherits these guarantees at each prediction step, as well as for the overall error rate. The multi-step ahead ACI algorithm can be used with different target error and learning rates at different prediction steps, which is illustrated in our numerical examples, where we employ a version of the confromalised ridge regression algorithm, adapted to multi-input multi-output forecasting. The examples serve to show how the method works in practice, illustrating the effect of variable target error and learning rates for different prediction steps, which suggests that a balance may be struck between efficiency (interval width) and coverage.
引用
收藏
页码:250 / 263
页数:14
相关论文
共 50 条
  • [41] Tiny Time-Series Transformers: Realtime Multi-Target Sensor Inference At The Edge
    Becnel, Tom
    Kelly, Kerry
    Gaillardon, Pierre-Emmanuel
    2022 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2022), 2022, : 179 - 184
  • [42] Multi-step-ahead neural networks for flood forecasting
    Chang, Fi-John
    Chiang, Yen-Ming
    Chang, Li-Chiu
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2007, 52 (01): : 114 - 130
  • [43] Multi-factor nonlinear time-series ecological modelling for algae bloom forecasting
    Wang, Li
    Zhang, Tianrui
    Jin, Xuebo
    Xu, Jiping
    Wang, Xiaoyi
    Zhang, Huiyan
    Yu, Jiabin
    Sun, Qian
    Zhao, Zhiyao
    Zheng, Lei
    DESALINATION AND WATER TREATMENT, 2018, 122 : 91 - 99
  • [44] Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output
    Azizi, Narjes
    Yaghoubirad, Maryam
    Farajollahi, Meisam
    Ahmadi, Abolfzl
    RENEWABLE ENERGY, 2023, 206 : 135 - 147
  • [45] Spatiotemporal Transformer Neural Network for Time-Series Forecasting
    You, Yujie
    Zhang, Le
    Tao, Peng
    Liu, Suran
    Chen, Luonan
    ENTROPY, 2022, 24 (11)
  • [46] SLIDING SIMULATION - A NEW APPROACH TO TIME-SERIES FORECASTING
    MAKRIDAKIS, S
    MANAGEMENT SCIENCE, 1990, 36 (04) : 505 - 512
  • [47] Time-series generative adversarial networks for flood forecasting
    Weng, Peiyao
    Tian, Yu
    Liu, Yingfei
    Zheng, Ying
    JOURNAL OF HYDROLOGY, 2023, 622
  • [48] Analysis of Forecasting Methods of Time-Series with Increasing Trends
    De la Torre Bucio, Jesus
    Ramos Paz, Antonio
    Aurelio Medina Rios, J.
    PROCEEDINGS OF THE 2021 XXIII IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2021), 2021,
  • [49] MTSMAE: Masked Autoencoders for Multivariate Time-Series Forecasting
    Tang, Peiwang
    Zhang, Xianchao
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 982 - 989
  • [50] One-Step and Multi-Step Ahead Stock Prediction Using Backpropagation Neural Networks
    Dong, Guanqun
    Fataliyev, Kamaladdin
    Wang, Lipo
    2013 9TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS), 2013,