Multimodal Deep Learning for Two-Year ENSO Forecast

被引:1
作者
Naisipour, Mohammad [1 ]
Saeedpanah, Iraj [1 ]
Adib, Arash [2 ]
机构
[1] Univ Zanjan, Fac Engn, Dept Civil Engn, Univ Blvd, Zanjan 4537138791, Iran
[2] Shahid Chamran Univ Ahvaz, Civil Engn & Architecture Fac, Ahvaz, Iran
关键词
Multimodal ENSO Forecast; ENSO; 3DCNN; Time Series Informer; Post-2000; UNCERTAINTY; MODEL; OSCILLATION;
D O I
10.1007/s11269-025-04128-3
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Predicting the onset of the El Ni & ntilde;o Southern Oscillation (ENSO) in the current rapidly changing climate could help save thousands of lives annually. Since the variability of this phenomenon is increasing, its prediction is becoming more challenging in the post-2000 era. Hence, we present a novel Multimodal ENSO Forecast (MEF) method for predicting ENSO up to two years for the post-2000 condition. The model receives a Sea Surface Temperature (SST) anomaly video, a heat content (HC) anomaly video, and an augmented time series to predict the Ni & ntilde;o 3.4 Index. We utilize a multimodal neural network to elicit all the embedded spatio-temporal information in the input data. The model consists of a 3D Convolutional Neural Network (3DCNN) that deals with short-term videos and a Time Series Informer (TSI) that finds the base signal in long-term time series. An Adaptive Ensemble Module (AEM) ranks the 80 ensemble members based on uncertainty analysis, discarding outliers and calculating a weighted average to reach the final prediction. We successfully tested the model against observational data and the state-of-the-art CNN model for a long and challenging period from 2000 to 2017. For almost all target seasons, MEF's skill is higher than that of the state-of-the-art CNN method, with correlation values exceeding 0.4 for all lead months. Moreover, the proposed method captures nearly 50% of all El Ni & ntilde;o and La Ni & ntilde;a events, even for 23-month lead times. The results ensure the MEF's validity as a reliable tool for predicting ENSO in the upcoming Earth's climate.
引用
收藏
页码:3745 / 3775
页数:31
相关论文
共 93 条
[1]  
Abadi Martin, 2016, arXiv
[2]   Node moving adaptive refinement strategy for planar elasticity problems using discrete least squares meshless method [J].
Afshar, M. H. ;
Naisipour, M. ;
Amani, J. .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2011, 47 (12) :1315-1325
[3]   ENSO and non-ENSO induced charging and discharging of the equatorial Pacific [J].
Anderson, Bruce T. ;
Perez, Renellys C. .
CLIMATE DYNAMICS, 2015, 45 (9-10) :2309-2327
[4]  
[Anonymous], 2016, Adv. Neural Inform. Process. Syst. Worksh
[5]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[6]   Uncertainty Analysis of River Water Quality Based on Stochastic Optimization of Waste Load Allocation Using the Generalized Likelihood Uncertainty Estimation Method [J].
Babamiri, Omid ;
Dinpashoh, Yagob .
WATER RESOURCES MANAGEMENT, 2024, 38 (03) :967-989
[7]  
Bell G, 2015, STATE CLIMATE 2015 C
[8]   Climate-invariant machine learning [J].
Beucler, Tom ;
Gentine, Pierre ;
Yuval, Janni ;
Gupta, Ankitesh ;
Peng, Liran ;
Lin, Jerry ;
Yu, Sungduk ;
Rasp, Stephan ;
Ahmed, Fiaz ;
O'Gorman, Paul A. ;
Neelin, J. David ;
Lutsko, Nicholas J. ;
Pritchard, Michael .
SCIENCE ADVANCES, 2024, 10 (06)
[9]   Changing climate both increases and decreases European river floods [J].
Bloeschl, Guenter ;
Hall, Julia ;
Viglione, Alberto ;
Perdigao, Rui A. P. ;
Parajka, Juraj ;
Merz, Bruno ;
Lun, David ;
Arheimer, Berit ;
Aronica, Giuseppe T. ;
Bilibashi, Ardian ;
Bohac, Milon ;
Bonacci, Ognjen ;
Borga, Marco ;
Canjevac, Ivan ;
Castellarin, Attilio ;
Chirico, Giovanni B. ;
Claps, Pierluigi ;
Frolova, Natalia ;
Ganora, Daniele ;
Gorbachova, Liudmyla ;
Gul, Ali ;
Hannaford, Jamie ;
Harrigan, Shaun ;
Kireeva, Maria ;
Kiss, Andrea ;
Kjeldsen, Thomas R. ;
Kohnova, Silvia ;
Koskela, Jarkko J. ;
Ledvinka, Ondrej ;
Macdonald, Neil ;
Mavrova-Guirguinova, Maria ;
Mediero, Luis ;
Merz, Ralf ;
Molnar, Peter ;
Montanari, Alberto ;
Murphy, Conor ;
Osuch, Marzena ;
Ovcharuk, Valeryia ;
Radevski, Ivan ;
Salinas, Jose L. ;
Sauquet, Eric ;
Sraj, Mojca ;
Szolgay, Jan ;
Volpi, Elena ;
Wilson, Donna ;
Zaimi, Klodian ;
Zivkovic, Nenad .
NATURE, 2019, 573 (7772) :108-+
[10]   Climate impacts of the El Nino-Southern Oscillation on South America [J].
Cai, Wenju ;
McPhaden, Michael J. ;
Grimm, Alice M. ;
Rodrigues, Regina R. ;
Taschetto, Andrea S. ;
Garreaud, Rene D. ;
Dewitte, Boris ;
Poveda, German ;
Ham, Yoo-Geun ;
Santoso, Agus ;
Ng, Benjamin ;
Anderson, Weston ;
Wang, Guojian ;
Geng, Tao ;
Jo, Hyun-Su ;
Marengo, Jose A. ;
Alves, Lincoln M. ;
Osman, Marisol ;
Li, Shujun ;
Wu, Lixin ;
Karamperidou, Christina ;
Takahashi, Ken ;
Vera, Carolina .
NATURE REVIEWS EARTH & ENVIRONMENT, 2020, 1 (04) :215-231