High-order numerical method for the fractional Korteweg-de Vries equation using the discontinuous Galerkin method

被引:0
作者
Gu, Yanhua [1 ]
机构
[1] Zhengzhou Univ Econ & Business, Dept Publ Educ, Zhengzhou 450000, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 01期
关键词
fractional derivative; finite element method; stability; error analysis; FINITE-DIFFERENCE METHOD; SUB-DIFFUSION; APPROXIMATIONS; CONVERGENCE; SCHEMES;
D O I
10.3934/math.2025063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractional Korteweg-de Vries (KdV) equation generalizes the classical KdV equation by incorporating truncation effects within bounded domains, offering a flexible framework for modeling complex phenomena. This paper develops a high-order, fully discrete local discontinuous Galerkin (LDG) method with generalized alternating numerical fluxes to solve the fractional KdV equation, enhancing applicability beyond the limitations of purely alternating fluxes. An efficient finite difference scheme approximates the fractional derivatives, followed by the LDG method for solving the equation. The scheme is proven unconditionally stable and convergent. Numerical experiments confirm the method's accuracy, efficiency, and robustness, highlighting its potential for broader applications in fractional differential equations.
引用
收藏
页码:1367 / 1383
页数:17
相关论文
共 45 条
[1]   Solution approximation of fractional boundary value problems and convergence analysis using AA-iterative scheme [J].
Abbas, Mujahid ;
Ciobanescu, Cristian ;
Asghar, Muhammad Waseem ;
Omame, Andrew .
AIMS MATHEMATICS, 2024, 9 (05) :13129-13158
[2]   Local discontinuous Galerkin method for time variable order fractional differential equations with sub-diffusion and super-diffusion [J].
Ahmadinia, M. ;
Safari, Z. ;
Abbasi, M. .
APPLIED NUMERICAL MATHEMATICS, 2020, 157 :602-618
[3]   Analysis of local discontinuous Galerkin method for time-space fractional sine-Gordon equations [J].
Ahmadinia, M. ;
Safari, Z. .
APPLIED NUMERICAL MATHEMATICS, 2020, 148 :1-17
[4]   A high order schema for the numerical solution of the fractional ordinary differential equations [J].
Cao, Junying ;
Xu, Chuanju .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 238 :154-168
[5]   NEW DISSIPATION MODEL BASED ON MEMORY MECHANISM [J].
CAPUTO, M ;
MAINARDI, F .
PURE AND APPLIED GEOPHYSICS, 1971, 91 (08) :134-&
[6]  
Caputo M., 2015, PROGR FRACT DIFFER A, V1, P73, DOI DOI 10.12785/PFDA/010201
[7]   Exponential Convergence of hp-discontinuous Galerkin Method for Nonlinear Caputo Fractional Differential Equations [J].
Chen, Yanping ;
Wang, Lina ;
Yi, Lijun .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
[8]  
Cheng Y, 2018, INT J NUMER ANAL MOD, V15, P785
[9]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[10]   Fourth-order numerical method for the space time tempered fractional diffusion-wave equation [J].
Dehghan, Mehdi ;
Abbaszadeh, Mostafa ;
Deng, Weihua .
APPLIED MATHEMATICS LETTERS, 2017, 73 :120-127