Testing heteroskedasticity in trace regression with low-rank matrix parameter

被引:0
|
作者
Tan, Xiangyong [1 ,2 ]
Lu, Xuanliang [1 ]
Hu, Tianying [1 ,2 ]
Li, Hongmei [1 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat & Data Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Jiangxi Univ Finance & Econ, Key Lab Data Sci Finance & Econ, Nanchang, Jiangxi, Peoples R China
基金
中国博士后科学基金;
关键词
Heteroskedasticity; Trace regression model; Low-rank; C22; XXX; HETEROSCEDASTICITY; VARIANCE;
D O I
10.1080/03610926.2025.2472791
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Heteroskedasticity testing is crucial in regression analysis, yet research on heteroskedasticity tests for matrix data remains limited. This article introduces a novel approach for testing heteroskedasticity in trace regression, using the nuclear norm penalty to account for the low-rank structure of the unknown parameters. Under some mild conditions and the null hypothesis, we derive the asymptotic distribution of the test statistic. Both simulation results and analyses of real data demonstrate that the proposed testing procedure performs well.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Adaptive Huber trace regression with low-rank matrix parameter via nonconvex regularization
    Tan, Xiangyong
    Peng, Ling
    Lian, Heng
    Liu, Xiaohui
    JOURNAL OF COMPLEXITY, 2024, 85
  • [2] Partial Trace Regression and Low-Rank Kraus Decomposition
    Kadri, Hachem
    Ayache, Stephane
    Huusari, Riikka
    Rakotomamonjy, Alain
    Ralaivola, Liva
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [3] The rate of convergence for sparse and low-rank quantile trace regression
    Tan, Xiangyong
    Peng, Ling
    Xiao, Peiwen
    Liu, Qing
    Liu, Xiaohui
    JOURNAL OF COMPLEXITY, 2023, 79
  • [4] On Low-rank Trace Regression under General Sampling Distribution
    Hamdi, Nima
    Bayati, Mohsen
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [5] A framework of regularized low-rank matrix models for regression and classification
    Hsin-Hsiung Huang
    Feng Yu
    Xing Fan
    Teng Zhang
    Statistics and Computing, 2024, 34
  • [6] Low-rank regularization in two-sided matrix regression
    Bettache, Nayel
    Butucea, Cristina
    ELECTRONIC JOURNAL OF STATISTICS, 2025, 19 (01): : 1174 - 1198
  • [7] Confidence Region of Singular Subspaces for Low-Rank Matrix Regression
    Xia, Dong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (11) : 7437 - 7459
  • [8] A framework of regularized low-rank matrix models for regression and classification
    Huang, Hsin-Hsiung
    Yu, Feng
    Fan, Xing
    Zhang, Teng
    STATISTICS AND COMPUTING, 2024, 34 (01)
  • [9] Parameter Optimization for Low-Rank Matrix Recovery in Hyperspectral Imaging
    Wolfmayr, Monika
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [10] Expectile trace regression via low-rank and group sparsity regularization
    Peng, Ling
    Tan, Xiangyong
    Xiao, Peiwen
    Rizk, Zeinab
    Liu, Xiaohui
    STATISTICS, 2023, 57 (06) : 1469 - 1489