Testing heteroskedasticity in trace regression with low-rank matrix parameter

被引:0
|
作者
Tan, Xiangyong [1 ,2 ]
Lu, Xuanliang [1 ]
Hu, Tianying [1 ,2 ]
Li, Hongmei [1 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat & Data Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Jiangxi Univ Finance & Econ, Key Lab Data Sci Finance & Econ, Nanchang, Jiangxi, Peoples R China
基金
中国博士后科学基金;
关键词
Heteroskedasticity; Trace regression model; Low-rank; C22; XXX; HETEROSCEDASTICITY; VARIANCE;
D O I
10.1080/03610926.2025.2472791
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Heteroskedasticity testing is crucial in regression analysis, yet research on heteroskedasticity tests for matrix data remains limited. This article introduces a novel approach for testing heteroskedasticity in trace regression, using the nuclear norm penalty to account for the low-rank structure of the unknown parameters. Under some mild conditions and the null hypothesis, we derive the asymptotic distribution of the test statistic. Both simulation results and analyses of real data demonstrate that the proposed testing procedure performs well.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Adaptive Huber trace regression with low-rank matrix parameter via nonconvex regularization
    Tan, Xiangyong
    Peng, Ling
    Lian, Heng
    Liu, Xiaohui
    JOURNAL OF COMPLEXITY, 2024, 85
  • [2] The rate of convergence for sparse and low-rank quantile trace regression
    Tan, Xiangyong
    Peng, Ling
    Xiao, Peiwen
    Liu, Qing
    Liu, Xiaohui
    JOURNAL OF COMPLEXITY, 2023, 79
  • [3] Confidence Region of Singular Subspaces for Low-Rank Matrix Regression
    Xia, Dong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (11) : 7437 - 7459
  • [4] Trace regression model with simultaneously low rank and row(column) sparse parameter
    Zhao, Junlong
    Niu, Lu
    Zhan, Shushi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 116 : 1 - 18
  • [5] Expectile trace regression via low-rank and group sparsity regularization
    Peng, Ling
    Tan, Xiangyong
    Xiao, Peiwen
    Rizk, Zeinab
    Liu, Xiaohui
    STATISTICS, 2023, 57 (06) : 1469 - 1489
  • [6] Low-rank matrix regression for image feature extraction and feature selection
    Yuan, Haoliang
    Li, Junyu
    Lai, Loi Lei
    Tang, Yuan Yan
    INFORMATION SCIENCES, 2020, 522 : 214 - 226
  • [7] LOW-RANK TENSOR HUBER REGRESSION
    Wei, Yangxin
    Luot, Ziyan
    Chen, Yang
    PACIFIC JOURNAL OF OPTIMIZATION, 2022, 18 (02): : 439 - 458
  • [8] Quantization for low-rank matrix recovery
    Lybrand, Eric
    Saab, Rayan
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (01) : 161 - 180
  • [9] Low-Rank Tensor Thresholding Ridge Regression
    Guo, Kailing
    Zhang, Tong
    Xu, Xiangmin
    Xing, Xiaofen
    IEEE ACCESS, 2019, 7 : 153761 - 153772
  • [10] A general robust low-rank multinomial logistic regression for corrupted matrix data classification
    Hu, Yuyu
    Fan, Yali
    Song, Yan
    Li, Ming
    APPLIED INTELLIGENCE, 2023, 53 (15) : 18564 - 18580